首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   42篇
  2020年   2篇
  2016年   3篇
  2015年   6篇
  2014年   2篇
  2013年   6篇
  2012年   8篇
  2011年   5篇
  2010年   6篇
  2009年   4篇
  2008年   3篇
  2007年   7篇
  2006年   3篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   6篇
  1997年   2篇
  1994年   3篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1980年   2篇
  1978年   3篇
  1975年   3篇
  1974年   3篇
  1972年   2篇
  1970年   2篇
  1968年   4篇
  1965年   2篇
  1959年   1篇
  1957年   2篇
  1953年   2篇
  1951年   1篇
  1950年   1篇
  1949年   1篇
  1945年   1篇
  1944年   2篇
  1943年   1篇
  1942年   1篇
  1940年   1篇
  1932年   1篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
51.
Rat liver microsomes converted retinol into retinal and retinoic acid. The production of retinal was observed over a range of substrate concentrations (10-100 microM), but retinoic acid was detected only at retinol concentrations of 50 microM or higher. At 50 microM retinol, the rate of microsomal retinal production was 2-fold greater than that of cytosol, but the rate of retinoic acid synthesis was 4-fold less than that of cytosol. Retinal was also converted into retinoic acid by rat liver microsomes, but at a rate 2-5% of that catalyzed by cytosol. Microsomes also interfered with the conversion of retinol and retinal into retinoic acid by rat liver cytosol. A 50% decrease in the cytosolic rates of retinoic acid production from retinol or retinal was caused by microsomal to cytosolic protein ratios of 0.1 and 0.5, respectively. Under the incubation conditions, which included NAD in the medium, addition of microsomes to cytosol did not affect the elimination half-life of retinol or retinoic acid, but did decrease the elimination half-life of retinal by 2-fold. These data show that retinal synthesis from retinol does not necessarily reflect retinoic acid synthesis and suggest that liver microsomes sequester free retinol and convert it into retinal primarily for elimination, rather than to serve as substrate for cytosolic retinoic acid synthesis.  相似文献   
52.
The global dispersal of anatomically modern humans over the past 100,000 years has produced patterns of phenotypic variation that have exerted—and continue to exert—powerful influences on the lives of individuals and the experiences of groups. The recency of our common ancestry and continued gene flow among populations have resulted in less genetic differentiation among geographically distributed human populations than is observed in many other mammalian species. Nevertheless, differences in appearance have contributed to the development of ideas about “race” and “ethnicity” that often include the belief that significant inherited differences distinguish humans. The use of racial, ethnic, and ancestral categories in genetics research can imply that group differences arise directly through differing allele frequencies, with little influence from socially mediated mechanisms. At the same time, careful investigations of the biological, environmental, social, and psychological attributes associated with these categories will be an essential component of cross-disciplinary research into the origins, prevention, and treatment of common diseases, including those diseases that differ in prevalence among groups.  相似文献   
53.
We examined whether blocking the MyD88 mediated pathway could protect myocardium from ischemia/reperfusion (I/R) injury by transfecting Ad5-dnMyD88 into the myocardium of rats (n=8) 3 days before the hearts were subjected to ischemia (45min) and reperfusion (4h). Ad5-GFP served as control (n=8). One group of rats was (n=8) subjected to I/R without transfection. Transfection of Ad5-dnMyD88 significantly reduced infarct size by 53.6% compared with the I/R group (15.1+/-3.02 vs 32.5+/-2.59) while transfection of Ad5-GFP did not affect I/R induced myocardial injury (35.4+/-2.59 vs 32.5+/-2.59). Transfection of Ad5-dnMyD88 significantly inhibited I/R-enhanced NFkappaB activity by 50% and increased the levels of phospho-Akt by 35.6% and BCL-2 by 81%, respectively. Cardiac myocyte apoptosis after I/R was significantly reduced by 59% in the Ad5-dnMyD88 group. The results demonstrate that both inhibition of the NFkappaB activation pathway and activation of the Akt signaling pathway may be responsible for the protective effect of transfection of dominant negative MyD88.  相似文献   
54.
The antibiotics nitrofurazone and nitrofurantoin are used in the treatment of genitourinary infections and as topical antibacterial agents. Their action is dependent upon activation by bacterial nitroreductase flavoproteins, including the Escherichia coli nitroreductase (NTR). Here we show that the products of reduction of these antibiotics by NTR are the hydroxylamine derivatives. We show that the reduction of nitrosoaromatics is enzyme-catalyzed, with a specificity constant approximately 10,000-fold greater than that of the starting nitro compounds. This suggests that the reduction of nitro groups proceeds through two successive, enzyme-mediated reactions and explains why the nitroso intermediates are not observed. The global reaction rate for nitrofurazone determined in this study is over 10-fold higher than that previously reported, suggesting that the enzyme is much more active toward nitroaromatics than previously estimated. Surprisingly, in the crystal structure of the oxidized NTR-nitrofurazone complex, nitrofurazone is oriented with its amide group, rather than the nitro group to be reduced, positioned over the reactive N5 of the FMN cofactor. Free acetate, which acts as a competitive inhibitor with respect to NADH, binds in a similar orientation. We infer that the orientation of bound nitrofurazone depends upon the redox state of the enzyme. We propose that the charge distribution on the FMN rings, which alters upon reduction, is an important determinant of substrate binding and reactivity in flavoproteins with broad substrate specificity.  相似文献   
55.
Pre-clinical tests are often performed to screen new implant designs, surgical techniques, and cement formulations. In this work, we developed a technique to simulate the cement–bone morphology found with postmortem retrieved cemented hip replacements. With this technique, a soy wax barrier is created along the endosteal surface of the bone, prior to cementing of the femoral component. This approach was applied to six fresh frozen human cadaver femora and the resulting cement–bone morphology and micromotion following application of torsional loads were measured on a transverse section of each bone. The contact fraction between cement and bone for the wax barrier specimens (6.4±5.7%, range: 0.5–15%) was similar to that found in postmortem retrievals (10.5±10.3%, range: 0.4–32.5%). Micro-motions at the cement–bone interface for the wax barrier specimens (0.5±1.06 mm, range: 0.005–2.66) were similar, but on average larger than those found with postmortem retrievals (0.092±0.22 mm, range: 0.002–0.73). The use of a wax barrier coating technique could improve experimental pre-clinical tests because it produces a cement–bone interface similar to those of functioning cemented components obtained following in vivo service.  相似文献   
56.
Cemented stem constructs were loaded in cyclic fatigue using stair climbing loading and the resulting fatigue damage to the cement mantle was determined in terms of angular position of crack and crack length. Techniques from circular statistics were used to determine if the distribution of micro-cracks was uniform. With a designated orientation of 0 degrees -90 degrees -180 degrees -270 degrees indicating lateral-anterior-medial-posterior anatomic directions, the overall distribution of cracks was not uniform (p<0.05) with a mean crack direction in the postero-medial (249 degrees) quadrant of the mantle. The crack angular distribution for proximal (postero-medial; 251 degrees) and distal (antero-medial; 112 degrees) regions of the cement mantle was also different (p<0.025). These findings suggest that the location of cement damage depends on anatomic position and appears to correspond with the tensile stress field in the cement mantle.  相似文献   
57.
Phosphoinositide-3-kinase (PI3K)/Akt dependent signaling has been shown to improve outcome in sepsis/septic shock. There is also ample evidence that PI3K/Akt dependent signaling plays a crucial role in maintaining normal cardiac function. We hypothesized that PI3K/Akt signaling may ameliorate septic shock by attenuating sepsis-induced cardiac dysfunction. Cardiac function and survival were evaluated in transgenic mice with cardiac myocyte specific expression of constitutively active PI3K isoform, p110α (caPI3K Tg). caPI3K Tg and wild type (WT) mice were subjected to cecal ligation/puncture (CLP) induced sepsis. Wild type CLP mice showed dramatic cardiac dysfunction at 6 hrs. Septic cardiomyopathy was significantly attenuated in caPI3K CLP mice. The time to 100% mortality was 46 hrs in WT CLP mice. In contrast, 80% of the caPI3K mice survived at 46 hrs after CLP (p<0.01) and 50% survived >30 days (p<0.01). Cardiac caPI3K expression prevented expression of an inflammatory phenotype in CLP sepsis. Organ neutrophil infiltration and lung apoptosis were also effectively inhibited by cardiac PI3k p110α expression. Cardiac high mobility group box–1 (HMGB-1) translocation was also inhibited by caPI3K p110α expression. We conclude that cardiac specific activation of PI3k/Akt dependent signaling can significantly modify the morbidity and mortality associated with sepsis. Our data also indicate that myocardial function/dysfunction plays a prominent role in the pathogenesis of sepsis and that maintenance of cardiac function during sepsis is essential. Finally, these data suggest that modulation of the PI3K/p110α signaling pathway may be beneficial in the prevention and/or management of septic cardiomyopathy and septic shock.  相似文献   
58.
59.
Why have organelles retained genomes?   总被引:14,自引:0,他引:14  
The observation that chloroplasts and mitochondria have retained relics of eubacterial genomes and a protein-synthesizing machinery has long puzzled biologists. If most genes have been transferred from organelles to the nucleus during evolution, why not all? What selective pressure maintains genomes in organelles? Electron transport through the photosynthetic and respiratory membranes is a powerful - but dangerous - source of energy. Recent evidence suggests that organelle genomes have persisted because structural proteins that maintain redox balance within bioenergetic membranes must be synthesized when and where they are needed, to counteract the potentially deadly side effects of ATP-generating electron transport.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号