首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   171篇
  2023年   9篇
  2022年   4篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   10篇
  2013年   16篇
  2012年   12篇
  2011年   16篇
  2010年   5篇
  2009年   7篇
  2008年   12篇
  2007年   14篇
  2006年   55篇
  2005年   79篇
  2004年   35篇
  2003年   18篇
  2002年   8篇
  2001年   2篇
  2000年   6篇
  1999年   1篇
排序方式: 共有333条查询结果,搜索用时 15 毫秒
11.
A series of hydroxylic compounds (1–10, NK-154 and NK-168) have been assayed for the inhibition of three physiologically relevant carbonic anhydrase isozymes, the cytosolic isozymes I, II and tumor-associated isozyme IX. The investigated compounds showed inhibition constants in the range of 0.068–4003, 0.012–9.9 and 0.025–115?μm at the hCA I, hCA II and hCA IX enzymes, respectively. In order to investigate the binding mechanisms of these inhibitors, in silico studies were also applied. Molecular docking scores of the studied compounds are calculated using scoring algorithms, namely Glide/induced fit docking. The inhibitory potencies of the novel compounds were analyzed at the human isoforms hCA I, hCA II and hCA IX as targets and the KI values were calculated.  相似文献   
12.
An oxadiazole derivative 2 was prepared by condensation reaction through cyclization of semicarbazone in the presence of bromine; the structural confirmation was supported by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, Fourier transform-infrared spectroscopy, and liquid chromatography-mass spectrometry. Its sensing ability towards Ni2+ ion was examined showing a binding constant of 1.04 × 105 compared with other suitable metal cations (Ca2+, Co2+, Cr3+, Ag+, Pb2+, Fe3+, Mg2+, and K+) using ultraviolet–visible (UV–vis) and fluorescence spectroscopic studies. The minimum concentration of Ni2+ ions and limit of detection was found to be 9.4 μM. A job's plot gave the binding stoichiometry ratio of oxadiazole derivative 2 vs Ni2+ ions as 2:1. Furthermore, the intercalative binding mode of oxadiazole derivative 2 with calf thymus DNA was supported by ultraviolet–visible (UV–vis) and fluorescent light, viscosity, cyclic voltammetry, time-resolved fluorescence, and circular dichroism measurements. The molecular docking result gave the binding score for oxadiazole derivative 2 as −6.5 kcal/mol, which further confirmed the intercalative interaction. In addition, the antifungal activity of oxadiazole derivative 2 was also screened against several fungal strains (C. albicans, C. glabrata, and C. tropicalis) by broth dilution and disc diffusion methods. In antioxidant studies, the oxadiazole derivative 2 showed potential scavenging activity against 2,2-diphenyl-1-picrylhydrazyl and H2O2 free radicals.  相似文献   
13.
14.
The NH2-terminal Jun kinases (JNKs) function in diverse roles through phosphorylation and activation of AP-1 components including ATF2 and c-Jun. However, the genes that mediate these processes are poorly understood. A model phenotype characterized by rapid activation of Jun kinase and enhanced DNA repair following cisplatin treatment was examined using chromatin immunoprecipitation with antibodies against ATF2 and c-Jun or their phosphorylated forms and hybridization to promoter arrays. Following genotoxic stress, we identified 269 genes whose promoters are bound upon phosphorylation of ATF2 and c-Jun. Binding did not occur following treatment with transplatin or the JNK inhibitor SP600125 or JNK-specific siRNA. Of 89 known DNA repair genes represented on the array, 23 are specifically activated by cisplatin treatment within 3-6 hr. Thus, the genotoxic stress response occurs at least partly via activation of ATF2 and c-Jun, leading to large-scale coordinate gene expression dominated by genes of DNA repair.  相似文献   
15.
The tissue kallikreins (KLKs) form a family of serine proteases that are involved in processing of polypeptide precursors and have important roles in a variety of physiologic and pathological processes. Common features of all tissue kallikrein genes identified to date in various species include a similar genomic organization of five exons, a conserved triad of amino acids for serine protease catalytic activity, and a signal peptide sequence encoded in the first exon. Here, we show that KLK4/KLK-L1/prostase/ARM1 (hereafter called KLK4) is the first significantly divergent member of the kallikrein family. The exon predicted to code for a signal peptide is absent in KLK4, which is likely to affect the function of the encoded protein. Green fluorescent protein (GFP)-tagged KLK4 has a distinct perinuclear localization, suggesting that its primary function is inside the cell, in contrast to the other tissue kallikreins characterized so far that have major extracellular functions. There are at least two differentially spliced, truncated variants of KLK4 that are either exclusively or predominantly localized to the nucleus when labeled with GFP. Furthermore, KLK4 expression is regulated by multiple hormones in prostate cancer cells and is deregulated in the androgen-independent phase of prostate cancer. These findings demonstrate that KLK4 is a unique member of the kallikrein family that may have a role in the progression of prostate cancer.  相似文献   
16.
17.
Virtual screening is an important step in early-phase of drug discovery process. Since there are thousands of compounds, this step should be both fast and effective in order to distinguish drug-like and nondrug-like molecules. Statistical machine learning methods are widely used in drug discovery studies for classification purpose. Here, we aim to develop a new tool, which can classify molecules as drug-like and nondrug-like based on various machine learning methods, including discriminant, tree-based, kernel-based, ensemble and other algorithms. To construct this tool, first, performances of twenty-three different machine learning algorithms are compared by ten different measures, then, ten best performing algorithms have been selected based on principal component and hierarchical cluster analysis results. Besides classification, this application has also ability to create heat map and dendrogram for visual inspection of the molecules through hierarchical cluster analysis. Moreover, users can connect the PubChem database to download molecular information and to create two-dimensional structures of compounds. This application is freely available through www.biosoft.hacettepe.edu.tr/MLViS/.  相似文献   
18.

Background

Although, ischemia/reperfusion induced vascular dysfunction has been widely described, no comparative study of in vivo- and in vitro-models exist. In this study, we provide a direct comparison between models (A) ischemic storage and in-vitro reoxygenation (B) ischemic storage and in vitro reperfusion (C) ischemic storage and in-vivo reperfusion.

Methods and Results

Aortic arches from rats were stored for 2 hours in saline. Arches were then (A) in vitro reoxygenated (B) in vitro incubated in hypochlorite for 30 minutes (C) in vivo reperfused after heterotransplantation (2, 24 hours and 7 days reperfusion). Endothelium-dependent and independent vasorelaxations were assessed in organ bath. DNA strand breaks were assessed by TUNEL-method, mRNA expressions (caspase-3, bax, bcl-2, eNOS) by quantitative real-time PCR, proteins by Western blot analysis and the expression of CD-31 by immunochemistry. Endothelium-dependent maximal relaxation was drastically reduced in the in-vivo models compared to ischemic storage and in-vitro reperfusion group, and no difference showed between ischemic storage and control group. CD31-staining showed significantly lower endothelium surface ratio in-vivo, which correlated with TUNEL-positive ratio. Increased mRNA and protein levels of pro- and anti-apoptotic gens indicated a significantly higher damage in the in-vivo models.

Conclusion

Even short-period of ischemia induces severe endothelial damage (in-vivo reperfusion model). In-vitro models of ischemia-reperfusion injury can be limitedly suited for reliable investigations. Time course of endothelial stunning is also described.  相似文献   
19.
During tooth development, the inner and outer enamel epithelia fuse by mitotic activity to produce a bilayered epithelial sheath termed Hertwig’s epithelial root sheath (HERS). The epithelial rests of Malassez (ERM) are the developmental residues of HERS and remain in the adult periodontal ligament (PDL). Although the cellular regulation of the Ca2+-binding proteins parvalbumin, calbindin-D28k, and calretinin has been reported in the inner and outer enamel epithelia during tooth development, an involvement of Ca2+-binding proteins in the ERM has not so far been characterized. Among the three Ca2+-binding proteins tested (calbindin D28k, parvalbumin, calretinin), we have only been able to detect calretinin in a subpopulation of adult rat molar ERM, by using quantitative immunohistochemical and confocal immunofluorescence techniques. TrkA (a marker for ERM) is present in numerous epithelial cell clusters, whereas calretinin has been localized in the cytosol and perinuclear region of a subpopulation of TrkA-positive cells. We conclude that, in inner and outer enamel epithelial cells, Ca2+ is regulated by calbindin, parvalbumin, and calretinin during tooth development, whereas in the ERM of adult PDL, Ca2+ is regulated only by calretinin. The expression of Ca2+-binding proteins is restricted in a developmental manner in the ERM.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号