首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   24篇
  2023年   2篇
  2022年   2篇
  2021年   8篇
  2020年   2篇
  2019年   4篇
  2018年   7篇
  2017年   6篇
  2016年   6篇
  2015年   8篇
  2014年   14篇
  2013年   15篇
  2012年   17篇
  2011年   16篇
  2010年   7篇
  2009年   6篇
  2008年   11篇
  2007年   10篇
  2006年   8篇
  2005年   13篇
  2004年   9篇
  2003年   5篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
  1951年   1篇
  1947年   1篇
排序方式: 共有229条查询结果,搜索用时 31 毫秒
31.
The major function of the Haptoglobin (Hp) protein is to control trafficking of extracorpuscular hemoglobin (Hb) thru the macrophage CD163 receptor with degradation of the Hb in the lysosome. There is a common copy number polymorphism in the Hp gene (Hp 2 allele) that has been associated with a severalfold increased incidence of atherothrombosis in multiple longitudinal studies. Increased plaque oxidation and apoptotic markers have been observed in Hp 2-2 atherosclerotic plaques, but the mechanism responsible for this finding has not been determined. We proposed that the increased oxidative injury in Hp 2-2 plaques is due to an impaired processing of Hp 2-2-Hb complexes within macrophage lysosomes, thereby resulting in redox active iron accumulation, lysosomal membrane oxidative injury, and macrophage apoptosis. We sought to test this hypothesis in vitro using purified Hp-Hb complex and cells genetically manipulated to express CD163. CD163-mediated endocytosis and lysosomal degradation of Hp-Hb were decreased for Hp 2-2-Hb complexes. Confocal microscopy using lysotropic pH indicator dyes demonstrated that uptake of Hp 2-2-Hb complexes disrupted the lysosomal pH gradient. Cellular fractionation studies of lysosomes isolated from macrophages incubated with Hp 2-2-Hb complexes demonstrated increased lysosomal membrane oxidation and a loss of lysosomal membrane integrity leading to lysosomal enzyme leakage into the cytoplasm. Additionally, markers of apoptosis, DNA fragmentation, and active caspase 3 were increased in macrophages that had endocytosed Hp 2-2-Hb complexes. These data provide novel mechanistic insights into how the Hp genotype regulates lysosomal oxidative stress within macrophages after receptor-mediated endocytosis of Hb.  相似文献   
32.
Preterm delivery is associated with neurodevelopmental impairment caused by environmental and genetic factors. Dysfunction of the excitatory amino acid transporter 2 (EAAT2) and the resultant impaired glutamate uptake can lead to neurological disorders. In this study, we investigated the role of single nucleotide polymorphisms (SNPs; g.-200C>A and g.-181A>C) in the EAAT2 promoter in susceptibility to brain injury and neurodisability in very preterm infants born at or before 32-week gestation. DNA isolated from newborns’ dried blood spots were used for pyrosequencing to detect both SNPs. Association between EAAT2 genotypes and cerebral palsy, cystic periventricular leukomalacia and a low developmental score was then assessed. The two SNPs were concordant in 89.4% of infants resulting in three common genotypes all carrying two C and two A alleles in different combinations. However, in 10.6% of cases, non-concordance was found, generating six additional rare genotypes. The A alleles at both loci appeared to be detrimental and consequently, the risk of developing cerebral palsy increased four- and sixfold for each additional detrimental allele at -200 and -181 bp, respectively. The two SNPs altered the regulation of the EAAT2 promoter activity and glutamate homeostasis. This study highlights the significance of glutamate in the pathogenesis of preterm brain injury and subsequent development of cerebral palsy and neurodevelopmental disabilities. Furthermore, the described EAAT2 SNPs may be an early biomarker of vulnerability to neurodisability and may aid the development of targeted treatment strategies.  相似文献   
33.
Angelman syndrome (AS) most frequently results from large (> or = 5 Mb) de novo deletions of chromosome 15q11-q13. The deletions are exclusively of maternal origin, and a few cases of paternal uniparental disomy of chromosome 15 have been reported. The latter finding indicates that AS is caused by the absence of a maternal contribution to the imprinted 15q11-q13 region. Failure to inherit a paternal 15q11-q13 contribution results in the clinically distinct disorder of Prader-Willi syndrome. Cases of AS resulting from translocations or pericentric inversions have been observed to be associated with deletions, and there have been no confirmed reports of balanced rearrangements in AS. We report the first such case involving a paracentric inversion with a breakpoint located approximately 25 kb proximal to the reference marker D15S10. This inversion has been inherited from a phenotypically normal mother. No deletion is evident by molecular analysis in this case, by use of cloned fragments mapped to within approximately 1 kb of the inversion breakpoint. Several hypotheses are discussed to explain the relationship between the inversion and the AS phenotype.  相似文献   
34.
35.
36.

The biphenyl-degrading Gram-negative bacterium Cupriavidus basilensis (formerly Ralstonia sp.) SBUG 290 uses various aromatic compounds as carbon and energy sources and has a high capacity to transform bisphenol A (BPA), which is a hormonally active substance structurally related to biphenyl. Biphenyl-grown cells initially hydroxylated BPA and converted it to four additional products by using three different transformation pathways: (a) formation of multiple hydroxylated BPA, (b) ring fission, and (c) transamination followed by acetylation or dimerization. Products of the ring fission pathway were non-toxic and all five products exhibited a significantly reduced estrogenic activity compared to BPA. Cell cultivation with phenol and especially in nutrient broth (NB) resulted in a reduced biotransformation rate and lower product quantities, and NB-grown cells did not produce all five products in detectable amounts. Thus, the question arose whether enzymes of the biphenyl degradation pathway are involved in the transformation of BPA and was addressed by proteomic analyses.

  相似文献   
37.
The removal of biofilm is a prerequisite for a successful treatment of biofilm‐associated diseases. In this study, we compared the feasibility of an atmospheric pressure plasma device with a sonic powered brush to remove naturally grown supragingival biofilm from extracted teeth. Twenty‐four periodontally hopeless teeth were extracted. Argon jet plasma with an oxygen admixture of 1 vol% and a sonically driven brush were used to remove biofilm with application times of 60 s, 180 s and 300 s. The treatment efficiency was assessed with light microscopy, scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). The highest biofilm removal rate was observed after an application time of 180 s/300 s with the sonic brush (80.4%/86.2%), plasma (75.5%/89.0%). These observations were confirmed by SEM. According to XPS analysis, plasma treatment decreased the amount of carbon and nitrogen, indicative of an extensive removal of proteins. Plasma treatment of naturally grown biofilm resulted in an effective cleaning of the tooth surface and was comparable to mechanical treatment. Treatment time had a significant influence on plaque reduction. These results showed that plasma could be a useful adjuvant treatment modality in cases where biofilm removal or reduction plays a decisive role, such as periodontitis and peri‐implantitis.

Plasma‐treated biofilm on an extracted tooth.  相似文献   

38.

Background  

Co-ordinated cell movement is a fundamental feature of developing embryos. Massive cell movements occur during vertebrate gastrulation and during the subsequent extension of the embryonic body axis. These are controlled by cell-cell signalling and a number of pathways have been implicated. Here we use long-term video microscopy in chicken embryos to visualize the migration routes and movement behaviour of mesoderm progenitor cells as they emerge from the primitive streak (PS) between HH stages 7 and 10.  相似文献   
39.
40.
Maspin is a serpin that has multiple effects on cell behavior, including inhibition of migration. How maspin mediates these diverse effects remains unclear, as it is devoid of protease inhibitory activity. We have previously shown that maspin rapidly inhibits the migration of vascular smooth muscle cells (VSMC), suggesting the involvement of direct interactions with cell surface proteins. Here, using immunofluorescence microscopy, we demonstrate that maspin binds specifically to the surface of VSMC in the dedifferentiated, but not the differentiated, phenotype. Ligand blotting of VSMC lysates revealed the presence of several maspin-binding proteins, with a protein of 150 kDa differentially expressed between the two VSMC phenotypes. Western blotting suggested that this protein was the β1 integrin subunit, and subsequently both α3β1 and α5β1, but not αvβ3, were shown to associate with maspin by coimmunoprecipitation. Specific binding of these integrins was also observed using maspin-affinity chromatography, using HT1080 cell lysates. Direct binding of maspin to α5β1 was confirmed using a recombinant α5β1-Fc fusion protein. Using conformation-dependent anti-β1 antibodies, maspin binding to VSMC was found to lead to a decrease in the activation status of the integrin. The functional involvement of α5β1 in mediating the effect of maspin was established by the inhibition of migration of CHO cells overexpressing human α5 integrin, but not those lacking α5 expression. Our observations suggest that maspin engages in specific interactions with a limited number of integrins on VSMC, leading to their inactivation, and that these interactions are responsible for the effects of maspin in the pericellular environment.Maspin is a member of the serpin family of serine protease inhibitors (SERPINB5).2 It was originally identified as a gene down-regulated in invasive breast cancer and proposed as a class II tumor suppressor (1), and has since been shown to have many effects on cellular behavior that are consistent with this activity. It has been shown to decrease the proliferation, migration, and metastasis of tumor cells in vivo (1, 2) and their invasion in vitro (3, 4), and to increase apoptosis of endothelial cells (5) and inhibit angiogenesis (6). However, the cellular effects of maspin are not restricted to tumor cells, and we have demonstrated that maspin can inhibit the migration of vascular smooth muscle cells (7).VSMC migration is a key event in the development of atherosclerosis (8), and contributes significantly to restenosis after angioplasty (9) and transplant arteriosclerosis (10). VSMC are not terminally differentiated and acquire migratory capacity as part of a phenotypic switch from a contractile, quiescent state to a dedifferentiated phenotype, characterized by proliferation and increased extracellular matrix synthesis, in addition to motility (11). This allows VSMC to respond to environmental cues following vascular injury. The phenotypic plasticity of VSMC is regulated by an array of signals, among which integrin-mediated association with surrounding extracellular matrix and changes in the expression of matrix-degrading proteases are prominent (1214).How maspin mediates its various cellular effects is unclear. Maspin has been reported to be an inhibitor of plasminogen activation (3, 15, 16), but we have shown that maspin is unable to inhibit either uPA- or tPA-catalyzed plasminogen activation under conditions in which the serpin PAI-1 was completely inhibitory (7). The anti-proteolytic inhibitory mechanism of serpins is dependent on characteristics of the reactive center loop (RCL) allowing it to adopt the necessary canonical conformation and rearrangements subsequent to protease binding (17). The RCL of maspin does not have the required characteristics (7, 18), and the conclusion that maspin is a non-inhibitory serpin is fully supported by its crystal structure (19, 20).Another confounding factor in understanding the mechanisms underlying the cellular effects of maspin is that, in common with the serpin PAI-2, it lacks an authentic secretion signal sequence. Nevertheless it has been shown to enter secretory vesicles (21) and is found extracellularly, in the cytoplasm and also in the nucleus (21, 22). Cytoplasmic and nuclear binding proteins for maspin have been identified (2325), and may be responsible for its effects on proliferation and apoptosis. How secreted, extracellular maspin exerts its effects is unclear, but a function as a cell signaling ligand has been proposed (2628). However, the characteristics of the maspin inhibitory effect on VSMC migration point to a more direct effect of maspin.To determine the mechanism of the maspin effect on VSMC migration, we have now attempted to identify maspin-binding proteins on the surface of these cells. In this report we provide biochemical, cellular, and functional evidence that the effect of maspin on cell migration is mediated by specific binding to cell adhesion receptors of the integrin family. We find that maspin binds specifically to β1 integrins on the surface of dedifferentiated VSMC, which leads to a reduction in the activation status of the integrin, and that the binding of maspin to α5β1 is sufficient for its inhibitory effects on cell migration and may represent a more general mechanism underlying its diverse biological effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号