首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   9篇
  2022年   2篇
  2021年   5篇
  2019年   6篇
  2018年   2篇
  2017年   5篇
  2016年   1篇
  2015年   9篇
  2014年   14篇
  2013年   15篇
  2012年   9篇
  2011年   11篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   8篇
  2006年   7篇
  2005年   11篇
  2004年   6篇
  2003年   7篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1998年   1篇
  1995年   1篇
  1992年   2篇
  1990年   3篇
  1985年   1篇
排序方式: 共有148条查询结果,搜索用时 15 毫秒
31.
A major challenge for oncologists and pharmacologists is to develop more potent and less toxic drugs that will decrease the tumor growth and improve the survival of lung cancer patients. Salinomycin is a polyether antibiotic used to kill gram-positive bacteria including mycobacteria, protozoans such as plasmodium falciparum, and the parasites responsible for the poultry disease coccidiosis. This old agent is now a serious anti-cancer drug candidate that selectively inhibits the growth of cancer stem cells. We investigated the impact of salinomycin on survival, colony growth, migration and invasion of the differentiated human non-small cell lung cancer lines LNM35 and A549. Salinomycin caused concentration- and time-dependent reduction in viability of LNM35 and A549 cells through a caspase 3/7-associated cell death pathway. Similarly, salinomycin (2.5–5 µM for 7 days) significantly decreased the growth of LNM35 and A549 colonies in soft agar. Metastasis is the main cause of death related to lung cancer. In this context, salinomycin induced a time- and concentration-dependent inhibition of cell migration and invasion. We also demonstrated for the first time that salinomycin induced a marked increase in the expression of the pro-apoptotic protein NAG-1 leading to the inhibition of lung cancer cell invasion but not cell survival. These findings identify salinomycin as a promising novel therapeutic agent for lung cancer.  相似文献   
32.
The restoration of endangered relict populations is challenging in conservation biology because they require specific environmental conditions within an inhospitable regional climate. Urothemis edwardsii Selys is the most endangered dragonfly in the Mediterranean with only one known relict small population (Lac Bleu) left in Northeast Algeria. With the absence of successful (re-)colonization over the last two decades, the restoration of the species became a top priority. To improve the status of the species in Northeast Algeria, we carried out a reintroduction and translocation scheme during 2011–2015 and assessed the changes in distribution and population size. Our restoration plan led to the emergence of three populations of which one was restored (Lac Noir), one resulted from successful translocation (Lac Tonga Northeast), and one established after successful colonization (Lac Tonga Southwest). In three localities (Lac Noir, Lac Tonga Northeast, and Lac Tonga Southwest), signs of population growth were observed, whereas no significant trend in the source population (Lac Bleu) was detected. A new population (El Graeate) was also recorded in 2015, but its origin is uncertain. Capture-mark-recapture on adults conducted in 2015 in two sites (Lac Bleu and Lac Noir) showed low recapture rates and no sign of dispersal between the two sites. Dispersal capacity of the species and conservation implications of adult distribution are discussed. This study highlights the importance of using biological indicators in selecting host habitats for the restoration of critically threatened populations.  相似文献   
33.
Farouq  A. A.  Ismail  H. Y.  Rabah  A. B.  Muhammad  A. B.  Ibrahim  U. B.  Fardami  A. Y. 《Plant and Soil》2022,477(1-2):759-777
Plant and Soil - To understand the influence of cowpea on its rhizosphere physicochemical and biological conditions. Pristine soil samples were contaminated with Bonny-Light crude oil and viable...  相似文献   
34.
The proprotein convertase PC1/3 preferentially cleaves its substrates in the dense core secretory granules of endocrine and neuroendocrine cells. Similar to most proteinases synthesized first as zymogens, PC1/3 is synthesized as a larger precursor that undergoes proteolytic processing of its signal peptide and propeptide. The N-terminally located propeptide has been shown to be essential for folding and self-inhibition. Furthermore, PC1/3 also possesses a C-terminal region (CT-peptide) which, for maximal enzymatic activity, must also be cleaved. To date, its role has been documented through transfection studies in terms of sorting and targeting of PC1/3 and chimeric proteins into secretory granules. In this study, we examined the properties of a 135-residue purified bacterially produced CT-peptide on the in vitro enzymatic activity of PC1/3. Depending on the amount of CT-peptide used, it is shown that the CT-peptide increases PC1/3 activity at low concentrations (nm) and decreases it at high concentrations (microm), a feature typical of an activator. Furthermore, we show that, contrary to the propeptide, the CT-peptide is not further cleaved by PC1/3 although it is sensitive to human furin activity. Based on these results, it is proposed that PC1/3, through its various domains, is capable of controlling its enzymatic activity in all regions of the cell that it encounters. This mode of self-control is unique among members of all proteinases families.  相似文献   
35.
Toxoplasma gondii is a ubiquitous parasite that infects nearly all warm-blooded animals. Developmental switching in T. gondii, from the virulent tachyzoite to the relatively quiescent bradyzoite stage, is responsible for the disease propagation after alteration of the immune status of the carrier. The redifferentiation event is characterized by an over expression of a tachyzoite specific set of glycosylphosphatidylinositol anchored surface antigens and free GPIs. T. gondii grown in animal cells uses two glycosylphosphatidylinositol precursors to anchor the parasite surface proteins. The first form has an N-acetylgalactosamine residue bound to a conserved three-mannosyl core glycan, while the second structure contains an additional terminal glucose linked to the N-acetylgalactosamine side branch. Sera from persons infected with T. gondii reacted only with the glucose-N-acetylgalactosamine-containing structure. Here we report that T. gondii cultured in human cells uses predominantly the N-acetylgalactosamine-containing structure to anchor the parasite surface antigens. On the other hand, glycosylphosphatidylinositol structures having an additional terminal glucose are found exclusively on the parasite cell surface as free glycolipids participating in the production of cytokines that are implicated in the pathogenesis of T. gondii. We also provide evidence that such free glycosylphosphatidylinositols are restricted mainly to the lipid microdomains in the parasite cell surface membrane and mostly associated with proteins involved in the parasite motility as well as invasion of the host cell.  相似文献   
36.
Glycosyl-phosphatidylinositol (GPI) is a complex glycolipid structure that acts as a membrane anchor for many cell-surface proteins of eukaryotes. GPI-anchored proteins are particularly abundant in protozoa such as Trypanosoma brucei, Leishmania major, Plasmodium falciparum and Toxoplasma gondii, and represent the major carbohydrate modification of many cell-surface parasite proteins. Although the GPI core glycan is conserved in all organisms, many differences in additional modifications to GPI structures and biosynthetic pathways have been reported. Therefore, the characteristics of GPI biosynthesis are currently being explored for the development of parasite-specific inhibitors. In vitro and in vivo studies using sugars and substrate analogues as well as natural compounds have shown that it is possible to interfere with GPI biosynthesis at different steps in a species-specific manner. Here we review the recent and promising progress in the field of GPI inhibition.  相似文献   
37.
Glycosylphosphatidyl-inositols (GPIs) are vital major glycoconjugates in intraerythrocytic stages of Plasmodium. Here, we report on the biosynthesis and the characterization of GPIs synthesized by the murine malarial parasite P. yoelii yoelii YM. Parasitized erythrocytes were labeled in vivo and in vitro with either radioactive nucleotide sugar precursors, ethanolamine or glucosamine. The pathway leading to the formation of GPI precursors was found to resemble that described for P. falciparum; however, in P. yoelii, the formation of an additional hydrophilic precursor containing an acid-labile modification was detected. The data suggest that this modification is linked to the fourth mannose attached to the trimannosyl backbone in an alpha1-2 linkage. The modification was susceptible to hydrofluoric acid (HF), but not to nitrous acid (HNO(2)). Data obtained from size-exclusion chromatography on Bio-Gel P4, and Mono Q analysis of the fragments generated by HNO(2) deamination suggest that the modification is due to the presence of an additional ethanolamine linked to the fourth mannose via a phosphodiester bond.  相似文献   
38.
We expressed the main surface antigen of Plasmodium falciparum sporozoites, the circumsporozoite protein (CSP), in High Five (Trichoplusia ni) insect cells using the baculovirus system. Significant amounts of the recombinant protein could be obtained, as judged by SDS-PAGE, Western blot, and immunofluorescence analysis. The cellular localization for recombinant CSP was determined by immunofluorescence. The high fluorescence signal of the permeabilized cells, relative to that of fixed nonpermeabilized cells, revealed a clear intracellular localization of this surface antigen. Analysis of possible posttranslational modifications of CSP showed that this recombinant protein is only N-glycosylated in the baculovirus system. Although DNA-sequence analysis revealed a GPI-cleavage/attachment site, no GPI anchor could be demonstrated. These analyses show that the glycosylation status of this recombinant protein may not reflect its native form in P. falciparum. The impact of these findings on vaccine development will be discussed.  相似文献   
39.
Protein convertase 1/3 is a serine endoproteinase present in the regulated secretory pathway of endocrine and neuroendocrine cells. It is responsible for the processing of numerous prohormones and proneuropeptides into their biologically active moieties, often following cleavage at pairs of basic residues. The determination of its three-dimensional structure, as well as the understanding of its enzymatic properties, would greatly benefit from the production and availability of large amounts of recombinant enzyme. We report herein improvements in the production of PC1/3 by expressing recombinant mutated forms in both insect cells (Spodoptera frugiperda, Sf9 cells) and larvae (Trichoplusia ni commonly referred to as cabbage looper). On one hand, we deleted the last 135 COOH-terminal residues of mPC1/3 and, on the other hand, we replaced the signal peptide of mPC1/3 by the viral glycoprotein gp67 signal peptide. These modifications were shown to improve markedly (up to 125%) the secretion into the Sf9 cells medium and the amount of enzymatic activity recovered when compared to the original vector. Moreover, intracoelemic injection of the vectors into insect larvae led to the production and purification of enzymatically active enzyme at a level of 30 microg/larva in the case of mPC1/3 and to the production of a high amount of another enzymatically active convertase, PC7. The optimal viral titer for infection of larvae was determined to be 10(6)pfu/ml. Taking into account the purification protocol combined with the ease and efficiency of using larvae, it should now be possible to meet the needs for biochemical and structural studies.  相似文献   
40.
Prenylated proteins are involved in the regulation of DNA replication and cell cycling and have important roles in the regulation of cell proliferation. Protein farnesyltransferase and protein geranylgeranyltransferase are the two enzymes responsible for catalysing isoprene lipid modifications. Recently these enzymes have been targets for the development of cancer chemotherapeutics. Using metabolic labelling we identified isoprenylated proteins which suggests the presence of protein farnesyltransferase in Toxoplasma gondii. T. gondii protein farnesyltransferase is heat-labile and requires Mg(2+) and Zn(2+) ions for full activity. Peptidomimetic analogues as well as short synthetic peptides were tested in vitro as possible competitors for farnesyltransferase substrates. We found that the synthetic peptide (KTSCVIA) specifically inhibited T. gondiiprotein farnesyltransferase but not mammalian (HeLa cells) farnesyltransferase. Therefore this study suggests the possible development of specific inhibitors of T. gondiiprotein farnesyltransferase as an approach to parasitic protozoa therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号