Introduction: The development and optimization of antibody drug conjugates (ADCs) rely on improving their analytical and bioanalytical characterization, by assessing critical quality attributes (CQAs). Among the CQAs, the glycoprofile, drug load distribution (DLD), the amount of unconjugated antibody (D0), the average drug-to-antibody ratio (DAR), the drug conjugation sites and the residual drug-linker and related product proportions (SMDs) in addition to high and low molecular weight species (H/LMWS), and charge variants are the most important ones.
Areas covered: The analytical and structural toolbox for the characterization of 1st, 2d and 3d generation ADCs was significantly extended in the last 3 years. Here, we reviewed state-of-the-art techniques, such as liquid chromatography, high resolution native and ion mobility mass spectrometry, multidimensional liquid chromatography and capillary electrophoresis hyphenated to mass spectrometry, reported mainly since 2016.
Expert commentary: These emerging techniques allow a deep insight into important CQAs that are related to ADC Chemistry Manufacturing and Control (CMC) as well as an improved understanding of in vitro and in vivo ADC biotransformations. This knowledge and the development of quantitative bioanalytical assays will continue to contribute to early-developability assessment for the optimization of all the ADC components (i.e. antibody, drug, and linker) and help to bring next-generation ADCs into late clinical development and to the market. 相似文献
Taxol is a microtubule inhibitor drug widely used in treatment of many types of cancer. Nephrotoxicity is the most hazardous effect complicating chemotherapy in general and kidney functions must be monitored early during any chemotherapeutic course. The main objective of the present study was to investigate the effect of acute Taxol nephrotoxicity in mice. In the present study Taxol at different doses; MD, ID and MTD (0.6, 1.15 and 1.7 mg/kg), respectively, was given by intra-peritoneal route to 54 adult male mice with an average body weight of 20–25 g. Kidney samples was taken 6, 24, 48 h following administration, fixed in 10% neutral buffered formalin, paraffin sections 5 μm thick were stained by haematoxylin and eosin and PAS and then examined for histological changes. Samples from animals treated by the maximum dose (MTD = 1.7 mg/kg) for 48 h were fixed in 3% gluteraldehyde in phosphate buffer (pH 7.4) and processed for transmission electron microscope. Taxol given for short duration was found to produce marked degenerative changes in kidney parenchyma even in minimum tolerated dose (MD = 0.6 mg/kg). Individual variations were observed regarding the degree of nephrotoxicity. There was marked loss of renal tubules epithelial lining, damage of brush border and formation of hyaline casts within the damaged tubules. The alterations were in the form of both necrotic and apoptotic changes in the kidney tubules. Focal atrophy of glomerular tufts was also observed. Vascular congestion and degenerative changes in renal blood vessels were occasionally evident in some samples. Ultrastructure study revealed damage of glomerular membrane. Proximal tubule showed loss of basal infoldings, damage of brush border, mitochondrial degeneration and nuclear changes. Distal tubules also showed demarked degenerative changes. Increased frequency of micronuclei proved that Taxol had genotoxic effects in mice bone marrow cells. In conclusion Taxol had nephrotoxic effect on mice kidney that must be considered during its use as a chemotherapeutic agent in human. 相似文献
ABSTRACT: BACKGROUND: Treatment options for patients suffering from progressive forms of multiple sclerosis (MS) remain inadequate. Mast cells actively participate in the pathogenesis of MS, in part because they release large amounts of various mediators that sustain the inflammatory network. Masitinib, a selective oral tyrosine kinase inhibitor, effectively inhibits the survival, migration and activity of mast cells. This exploratory study assessed the safety and clinical benefit of masitinib in the treatment of primary progressive MS (PPMS) or relapse-free secondary progressive MS (rfSPMS). METHODS: Multicenter, randomized, placebo-controlled, proof-of-concept trial. Masitinib was administered orally at 3 to 6 mg/kg/day for at least 12 months, with dose adjustment permitted in event of insufficient response with no toxicity. The primary response endpoint was the change relative to baseline in the multiple sclerosis functional composite score (MSFC). Clinical response was defined as an increase in MSFC score relative to baseline of > 100%. RESULTS: Thirty-five patients were randomized to receive masitinib (N = 27) or placebo (N = 8). Masitinib was relatively well tolerated with the most common adverse events being asthenia, rash, nausea, edema, and diarrhea. The overall frequency of adverse events was similar to the placebo group, however, a higher incidence of severe and serious events was associated with masitinib treatment. Masitinib appeared to have a positive effect on MS-related impairment for PPMS and rfSPMS patients, as evidenced by an improvement in MSFC scores relative to baseline, compared with a worsening MSFC score in patients receiving placebo; +103% +/- 189 versus -60% +/- 190 at month-12, respectively. This positive albeit non-statistically significant response was observed as early as month-3 and sustained through to month-18, with similar trends seen in the PPMS and rfSPMS subpopulations. A total of 7/17 (41%) assessable masitinib patients reported clinical response following 12 months of treatment (according to the modified intent-to-treat population, observed cases) compared with none in the placebo group. The Expanded Disability Status Scale remained stable for both treatment groups. CONCLUSION: These data suggest that masitinib is of therapeutic benefit to PPMS and rfSPMS patients and could therefore represent an innovative avenue of treatment for this disease. This exploratory trial provides evidence that may support a larger placebo-controlled investigation. 相似文献
Recent work indicates that the nuclear envelope is a major signaling node for the cell that can influence tissue differentiation processes. Here we present two nuclear envelope trans-membrane proteins TMEM120A and TMEM120B that are paralogs encoded by the Tmem120A and Tmem120B genes. The TMEM120 proteins are expressed preferentially in fat and both are induced during 3T3-L1 adipocyte differentiation. Knockdown of one or the other protein altered expression of several genes required for adipocyte differentiation, Gata3, Fasn, Glut4, while knockdown of both together additionally affected Pparg and Adipoq. The double knockdown also increased the strength of effects, reducing for example Glut4 levels by 95% compared to control 3T3-L1 cells upon pharmacologically induced differentiation. Accordingly, TMEM120A and B knockdown individually and together impacted on adipocyte differentiation/metabolism as measured by lipid accumulation through binding of Oil Red O and coherent anti-Stokes Raman scattering microscopy (CARS). The nuclear envelope is linked to several lipodystrophies through mutations in lamin A; however, lamin A is widely expressed. Thus it is possible that the TMEM120A and B fat-specific nuclear envelope transmembrane proteins may play a contributory role in the tissue-specific pathology of this disorder or in the wider problem of obesity. 相似文献
Glycosylphosphatidylinositols (GPIs) from several protozoan parasites are thought to elicit a detrimental stimulation of the host innate immune system aside their main function to anchor surface proteins. Here we analyzed the GPI biosynthesis of an avirulent Toxoplasma gondii type 2 strain (PTG) by metabolic radioactive labeling. We determined the biological function of individual GPI species in the PTG strain in comparison with previously characterized GPI-anchors of a virulent strain (RH). The GPI intermediates of both strains were structurally similar, however the abundance of two of six GPI intermediates was significantly reduced in the PTG strain. The side-by-side comparison of GPI-anchor content revealed that the PTG strain had only ∼34% of the protein-free GPIs as well as ∼70% of the GPI-anchored proteins with significantly lower rates of protein N-glycosylation compared to the RH strain. All mature GPIs from both strains induced comparable secretion levels of TNF-α and IL-12p40, and initiated TLR4/MyD88-dependent NF-κBp65 activation in macrophages. Taken together, these results demonstrate that PTG and RH strains differ in their GPI biosynthesis and possess significantly different GPI-anchor content, while individual GPI species of both strains induce similar biological functions in macrophages. 相似文献
Excitatory transmission in the brain is commonly mediated by the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. In amyotrophic lateral sclerosis (ALS), AMPA receptors allow cytotoxic levels of calcium into neurons, contributing to motor neuron injury. We have previously shown that oculomotor neurons resistant to the disease process in ALS show reduced AMPA-mediated inward calcium currents compared with vulnerable spinal motor neurons. We have also shown that PTEN (phosphatase and tensin homolog deleted on chromosome 10) knockdown via siRNA promotes motor neuron survival in models of spinal muscular atrophy (SMA) and ALS. It has been reported that inhibition of PTEN attenuates the death of hippocampal neurons post injury by decreasing the effective translocation of the GluR2 subunit into the membrane. In addition, leptin can regulate AMPA receptor trafficking via PTEN inhibition. Thus, we speculate that manipulation of AMPA receptors by PTEN may represent a potential therapeutic strategy for neuroprotective intervention in ALS and other neurodegenerative disorders. To this end, the first step is to establish a fibroblast–iPS–motor neuron in vitro cell model to study AMPA receptor manipulation. Here we report that iPS-derived motor neurons from human fibroblasts express AMPA receptors. PTEN depletion decreases AMPA receptor expression and AMPA-mediated whole-cell currents, resulting in inhibition of AMPA-induced neuronal death in primary cultured and iPS-derived motor neurons. Taken together, our results imply that PTEN depletion may protect motor neurons by inhibition of excitatory transmission that represents a therapeutic strategy of potential benefit for the amelioration of excitotoxicity in ALS and other neurodegenerative disorders. 相似文献
1. Temporal isolation by cohort splitting is a life‐history mechanism that has been reported in many temperate insects, including those inhabiting freshwater habitats. Although the cohorts seem to maintain separate temporal niches in a specific location, the temporal isolation may be disrupted across a geographic gradient due to constraints imposed by seasonality. 2. This prediction was tested on two temporally isolated populations of the obligatory univoltine Lestes virens (Odonata, Lestidae) in north‐east Algeria. Although the two cohorts emerge at the same time in spring, one cohort reproduces in summer, while the second cohort estivates in summer and reproduces in autumn. A survey assessing the phenology and abundance was conducted on eight ponds across an elevational gradient (5–1012 m asl) using capture–mark–recapture and adult density sampling. 3. In all sites from low to high elevation, the species showed cohort splitting. The phenology of reproduction of both cohorts showed a delay with elevation, but the cline was 2.2 days for the summer cohort and 0.7 days for the autumn cohort per 100 m of elevation. Moreover, the density of adults in the autumn cohort was higher than that of summer cohort across the entire elevational range, and the difference increased with elevation. 4. These findings regarding the differential elevational cline in the phenology show that the temporal isolation of the two cohorts becomes narrower at high elevation, suggesting potential inter‐cohort temporal overlap at higher elevations. 5. The claim that the two cohorts of L. virens are true temporally isolated species needs further investigation. 相似文献
Genetic deficiency of the glycogen debranching enzyme causes glycogen storage disease type III, an autosomal recessive inherited disorder. The gene encoding this enzyme is designated as AGL gene. The disease is characterized by fasting hypoglycemia, hepatomegaly, growth retardation, progressive myopathy and cardiomyopathy. In the present study, we present clinical features and molecular characterization of two consanguineous Tunisian siblings suffering from Glycogen storage disease type III. The full coding exons of the AGL gene and their corresponding exon–intron boundaries were amplified for the patients and their parents. Gene sequencing identified a novel single point mutation at the conserved polypyrimidine tract of intron 21 in a homozygous state (IVS21-8A>G). This variant cosegregated with the disease and was absent in 102 control chromosomes. In silico analysis using online resources showed a decreased score of the acceptor splice site of intron 21. RT-PCR analysis of the AGL splicing pattern revealed a 7 bp sequence insertion between exon 21 and exon 22 due to the creation of a new 3′ splice site. The predicted mutant enzyme was truncated by the loss of 637 carboxyl-terminal amino acids as a result of premature termination. This novel mutation is the first mutation identified in the region of Bizerte and the tenth AGL mutation identified in Tunisia. Screening for this mutation can improve the genetic counseling and prenatal diagnosis of GSD III. 相似文献