首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8536篇
  免费   766篇
  国内免费   3篇
  9305篇
  2024年   7篇
  2023年   42篇
  2022年   90篇
  2021年   156篇
  2020年   119篇
  2019年   164篇
  2018年   158篇
  2017年   157篇
  2016年   253篇
  2015年   479篇
  2014年   469篇
  2013年   524篇
  2012年   763篇
  2011年   738篇
  2010年   399篇
  2009年   392篇
  2008年   572篇
  2007年   520篇
  2006年   528篇
  2005年   505篇
  2004年   483篇
  2003年   421篇
  2002年   377篇
  2001年   106篇
  2000年   71篇
  1999年   90篇
  1998年   93篇
  1997年   72篇
  1996年   62篇
  1995年   56篇
  1994年   63篇
  1993年   32篇
  1992年   37篇
  1991年   35篇
  1990年   28篇
  1989年   23篇
  1988年   25篇
  1987年   19篇
  1986年   20篇
  1985年   16篇
  1984年   29篇
  1983年   15篇
  1982年   17篇
  1981年   16篇
  1980年   8篇
  1979年   6篇
  1978年   9篇
  1977年   6篇
  1976年   6篇
  1973年   9篇
排序方式: 共有9305条查询结果,搜索用时 0 毫秒
31.
After digestion by TaqI or nicking by DNAase I, five highly modified bacteriophage DNAs were tested as substrates for T4 DNA ligase. The DNAs used were from phages T4, XP12, PBS1, SP82, and SP15, which contain as a major base either glucosylated 5-hydroxymethylcytosine, 5-methylcytosine, uracil, 5-hydroxymethyluracil, or phosphoglucuronated, glucosylated 5-(4′,5′-dihydroxypentyl)uracil, respectively. The relative ability of cohesive-ended TaqI fragments of these DNAs and of normal, λ DNA to be ligated was as follows: λ DNA = XP12 DNA >SP82 DNA ? nonglucosylatedT4 DNA >T4 DNA = PBS1 DNA ? SP15 DNA. TaqI-T4 DNA fragments were also inefficiently ligated by Escherichia coli DNA ligase. However, annealing-independent ligation of DNAase I-nicked T4, PBS1, and λ DNAs was equally efficient. We conclude that the poor ligation of TaqI fragments of T4 and PBS1 DNAs was due to the hydroxymethylation (and glucosylation) of cytosine residues at T4's cohesive ends and the substitution of uracil residues for thymine residues adjacent to PBS1's cohesive ends destabilizing the annealing of the restriction fragments. Only SP15 DNA with its negatively charged, modified base was unable to serve as a substrate for T4 DNA ligase in an annealing-independent reaction; therefore, its modification directly interfered with enzyme binding or catalysis.  相似文献   
32.
Summary We studied the effect of removing and adding plant litter in different seasons on biomass, density, and species richness in a Solidago dominated old-field community in New Jersey, USA. We removed all the naturally accumulated plant litter in November (658 g/m2) and in May (856 g/m2) and doubled the amount of litter in November and May in replicated plots (1 m2). An equal number of plots were left as controls. Litter removal and addition had little impact on total plant biomass or individual species biomass in the growing season following the manipulations. Litter removal, however, significantly increased plant densities but this varied depending upon the season of litter removal, species, and life history type. Specifically, the fall litter removal had a much greater impact than the spring litter removal suggesting that litter has its greatest impact after plant senescence in the fall and prior to major periods of early plant growth in spring. Annual species showed the greatest response, especially early in the growing season. Both spring and fall litter removal significantly increased species richness throughout the study. Litter additions in both spring and fall reduced both plant densities and species richness in June, but these differences disappeared near the end of the growing season in September. We concluded than in productive communities where litter accumulation may be substantial, litter may promote low species richness and plant density. This explanation does not invoke resource competition for the decline in species richness. Finally, we hypothesize that there may be broad thresholds of litter accumulation in different community types that may act to either increase or decrease plant yield and diversity.  相似文献   
33.
The present study describes the variability of the opisthaptoral hard parts ofGyrodactylus callariatis Malmberg, 1957 infesting juvenile Atlantic codGadus morhua L. in the Oslo Fjord, Norway. Samples were taken monthly or bimonthly from January 1993 to July 1994. The length of the 14 characters measured varied considerably throughout the period, and showed a significant regression on the water temperature: as the water temperature increased the length of the hard parts decreased andvice versa. There were no significant differences in the size of the hard parts between young worms (without penis) and older worms (with penis). Some of the characters (especially the anchor shaft) from parasites located on the skin and fins were significantly longer than those of parasites located in the oral cavity, pharynx and gills. Generally, the variation in the shape of the hard parts was small; the anchor root, ventral bar membrane and ventral bar processes were the most variable parts. The shape of the hard parts did not vary as a consequence of seasonal changes in the water temperature, age of the worms or site on the host.  相似文献   
34.
Expression of chalcone synthase (CHS), the first enzyme in the flavonoid branch of the phenylpropanoid biosynthetic pathway in plants, is induced by developmental cues and environmental stimuli. We used plant transformation technology to delineate the functional structure of the French bean CHS15 gene promoter during plant development. In the absence of an efficient transformation procedure for bean, Nicotiana tabacum was used as the model plant. CHS15 promoter activity, evaluated by measurements of -d-glucuronidase (GUS) activity, revealed a tissue-specific pattern of expression similar to that reported for CHS genes in bean. GUS activity was observed in flowers and root tips. Floral expression was confined to the pigmented part of petals and was induced in a transient fashion. Fine mapping of promoter cis-elements was accomplished using a set of promoter mutants generated by unidirectional deletions or by site-directed mutagenesis. Maximal floral and root-specific expression was found to require sequence elements located on both sides of the TATA-box. Two adjacent sequence motifs, the G-box (CACGTG) and H-box (CCTACC(N)7CT) located near the TATA-box, were both essential for floral expression, and were also found to be important for root-specific expression. The CHS15 promoter is regulated by a complex interplay between different cis-elements and their cognate factors. The conservation of both the G-box and H-box in different CHS promoters emphasizes their importance as regulatory motifs.  相似文献   
35.
The organization of the nervous system ofProcerodes littoralis (Tricladida, Maricola, Procerodidae) was studied by immunocytochemistry, using antibodies to authentic flatworm neuropeptide F (NPF) (Moniezia expansa). Compared to earlier investigations of the neuroanatomy of tricladid flatworms, the pattern of NPF immunoreactivity inProcerodes littoralis reveals differences in the following respects: 1. Shape and structure of the brain. 2. Number and composition of longitudinal nerve cords. 3. Shape of branches of, and transverse connections between, main ventral nerve cords. 4. Composition of the pharyngeal nervous system. The rich innervation by NPF immunoreactive (IR) fibres and cells of the subepithelial muscle layer, the pharynx musculature and the musculature of the male copulatory apparatus indicates a neurotransmitter or neuromodulatory influence on muscular activity.  相似文献   
36.
37.
Bilateral asymmetry in the structure of the second metacarpal was examined in relation to functional hand dominance in a large, clinically nonselected, healthy population sample from the Baltimore Longitudinal Study of Aging. Bilateral bone measurements were made from anteroposterior hand radiographs of a total of 992 individuals, 609 males and 383 females, with an age range of 19–94 years. Hand dominance was determined on the basis of personal impression. Total width and medullary width at the midshaft of the second metacarpal were measured to 0.05 mm using a Helios caliper. These two measurements were used to derive cortical thickness, cortical bone area, periosteal (total) area, medullary area, percent cortical area, and the second moment of area in the mediolateral plane. In both right and left-handed individuals, statistically significant side differences were found in the calculated bone areas and the second moment of area, with the dominant hand being larger. Cortical thickness did not show significant side-related differences for either handedness. These results show that functional handedness leads to periosteal and endosteal expansion of the second metacarpal cortex on the dominant side, increasing bone strength without increasing cortical thickness. This is the first time this pattern of asymmetry has been reported in left-handers as well as right-handers. Our results argue for the primacy of environmental (mechanical) effects in determining bilateral asymmetry of limb bone structural properties. © 1994 Wiley-Liss, Inc.  相似文献   
38.
39.
Brassica napus cv. Topas microspores can be diverted from pollen development toward haploid embryo formation in culture by subjecting them to a heat stress treatment. We show that this switch in developmental pathways is accompanied by the induction of high levels of napin seed storage protein gene expression. Changes in the plant growth or microspore culture conditions were not by themselves sufficient to induce napin gene expression. Specific members of the napin multigene family were cloned from a cDNA library prepared from microspores that had been induced to undergo embryogenesis. The majority of napin clones represented three members (BnmNAP2, BnmNAP3 and BnmNAP4) that, along with a previously isolated napin genomic clone (BngNAP1), constitute the highly conserved BnmNAP subfamily of napin genes. Both RNA gel blot analysis, using a subfamily-specific probe, and histochemical analysis of transgenic plants expressing a BngNAP1 promoter--glucuronidase gene fusion demonstrated that the BnmNAP subfamily is expressed in embryogenic microspores as well as during subsequent stages of microsporic embryo development.  相似文献   
40.
Transfer of N from legumes to associated non-legumes has been demonstrated under a wide range of conditions. Because legumes are able to derive their N requirements from N2 fixation, legumes can serve, through the transfer of N, as a source of N for accompanying non-legumes. Studies, therefore, are often limited to the transfer of N from the legume to the non-legume. However, legumes preferentially rely on available soil N as their source of N. To determine whether N can be transferred from a non-legume to a legume, two greenhouse experiments were conducted. In the short-term N-transfer experiment, a portion of the foliage of meadow bromegrass (Bromus riparius Rhem.) or alfalfa (Medicago sativa L.) was immersed in a highly labelled 15N-solution and following a 64 h incubation, the roots and leaves of the associated alfalfa and bromegrass were analyzed for 15N. In the long-term N transfer experiment, alfalfa and bromegrass were grown in an 15N-labelled nutrient solution and transplanted in pots with unlabelled bromegrass and alfalfa plants. Plants were harvested at 50 and 79 d after transplanting and analyzed for 15N content. Whether alfalfa or bromegrass were the donor plants in the short-term experiment, roots and leaves of all neighbouring alfalfa and bromegrass plants were enriched with 15N. Similarly, when alfalfa or bromegrass was labelled in the long-term experiment, the roots and shoots of neighbouring alfalfa and bromegrass plants became enriched with 15N. These two studies conclusively show that within a short period of time, N is transferred from both the N2-fixing legume to the associated non-legume and also from the non-legume to the N2-fixing legume. The occurrence of a bi-directional N transfer between N2-fixing and non-N2-fixing plants should be taken into consideration when the intensity of N cycling and the directional flow of N in pastures and natural ecosystems are investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号