首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   364篇
  免费   44篇
  国内免费   1篇
  2021年   8篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2016年   5篇
  2015年   11篇
  2014年   11篇
  2013年   13篇
  2012年   20篇
  2011年   19篇
  2010年   12篇
  2009年   10篇
  2008年   18篇
  2007年   10篇
  2006年   11篇
  2005年   12篇
  2004年   16篇
  2003年   13篇
  2002年   8篇
  2001年   8篇
  2000年   15篇
  1999年   10篇
  1998年   6篇
  1997年   4篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   10篇
  1991年   11篇
  1990年   10篇
  1989年   9篇
  1988年   10篇
  1987年   7篇
  1985年   3篇
  1984年   5篇
  1982年   4篇
  1980年   5篇
  1979年   8篇
  1978年   4篇
  1976年   4篇
  1975年   4篇
  1974年   4篇
  1973年   7篇
  1971年   9篇
  1970年   3篇
  1969年   3篇
  1968年   4篇
  1966年   2篇
  1965年   2篇
  1962年   3篇
排序方式: 共有409条查询结果,搜索用时 31 毫秒
361.
Mice with targeted deletion of fibrinogen-like protein 2 (fgl2) spontaneously developed autoimmune glomerulonephritis with increasing age, as did wild-type recipients reconstituted with fgl2-/- bone marrow. These data implicate FGL2 as an important immunoregulatory molecule and led us to identify the underlying mechanisms. Deficiency of FGL2, produced by CD4+CD25+ regulatory T cells (Treg), resulted in increased T cell proliferation to lectins and alloantigens, Th 1 polarization, and increased numbers of Ab-producing B cells following immunization with T-independent Ags. Dendritic cells were more abundant in fgl2-/- mice and had increased expression of CD80 and MHCII following LPS stimulation. Treg cells were also more abundant in fgl2-/- mice, but their suppressive activity was significantly impaired. Ab to FGL2 completely inhibited Treg cell activity in vitro. FGL2 inhibited dendritic cell maturation and induced apoptosis of B cells through binding to the low-affinity FcgammaRIIB receptor. Collectively, these data suggest that FGL2 contributes to Treg cell activity and inhibits the development of autoimmune disease.  相似文献   
362.
PKG activator 8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphate (CPT) at reperfusion protects ischemic hearts, but the mechanism is unknown. We recently proposed that in preconditioned hearts PKC lowers the threshold for adenosine to initiate signaling from low-affinity A2b receptors during early reperfusion thus allowing endogenous adenosine to activate survival kinases phosphatidylinositol 3-kinase (PI3K) and ERK. We tested whether CPT might also sensitize A2b receptors to adenosine. CPT (10 microM) during the first minutes of reperfusion markedly reduced infarction in isolated rabbit hearts undergoing 30-min regional ischemia/2-h reperfusion, and salvage was blocked by MRS 1754, an A2b-selective antagonist. Coadministration of wortmannin (PI3K inhibitor) or PD-98059 (MEK1/2 and therefore ERK1/2 inhibitor) also blocked protection. In nonischemic hearts, 10-min infusion of CPT did not change phosphorylation of Akt or ERK1/2. Neither did a subthreshold dose (2.5 nM) of the nonselective but A2b-potent receptor agonist 5'-(N-ethylcarboxamido)adenosine (NECA). However, when 2.5 nM NECA was combined with 10 microM CPT, both phospho-Akt and phospho-ERK1/2 significantly increased, indicating CPT had lowered the threshold for A2b-dependent signaling. The PKC antagonist chelerythrine blocked this phosphorylation induced by CPT + NECA. Chelerythrine also blocked the anti-infarct effect of CPT as did nonselective (glibenclamide) and mitochondrial-selective (5-hydroxydecanoate) K(ATP) channel blockers. A free radical scavenger, N-(2-mercaptopropionyl)glycine, also blocked CPT protection. We propose CPT targets PKG, which activates PKC through mitochondrial K(ATP) channel (mitoKATP)-dependent redox signaling, a sequence mimicking that already documented in preconditioning. Activated PKC then augments sensitivity of normally low-affinity cardiac adenosine A2b receptors so endogenous adenosine can protect by activating Akt and ERK.  相似文献   
363.
Unlike all plant inward-rectifying potassium channels, the carrot channel KDC1 has two histidine pairs (H161,H162) in the S3–S4 and (H224,H225) in the S5–S6 linkers. When coinjected with KAT1 in Xenopus oocytes, KDC1 participates in the formation of heteromultimeric KDC1:KAT1 channels and the ionic current is potentiated by extracellular Zn2+. To investigate the potential interactions between KDC1 and zinc, a KDC1-KAT1 dimer was constructed. The dimeric and heteromeric channels displayed similar characteristics and the same sensitivity to zinc and other metals; this result suggests that zinc binding is mediated by residues in a single channel subunit. The KDC1:KAT1 currents were also potentiated by external Pb2+ and Cd2+ and inhibited by Ni2+. To investigate further the role of KDC1-histidines, these amino acids were mutated into alanines. The single mutations H225A, H161A, and H162A did not affect the response of the heteromeric channels to zinc. Conversely, the single mutant H224A and the double mutants (H224A,H225A) and (H161A,H162A) abolished zinc potentiation, but not that induced by Pb2+ or Cd2+. These results suggest that Zn2+ potentiation cannot be ascribed to simple electrostatic interactions between zinc and channel residues and that histidine 224 is crucial for zinc but not for lead potentiation of the current.  相似文献   
364.
Interleukin-1 (IL-1) induces extracellular matrix degradation as a result of increased expression of matrix metalloproteinases (MMPs). We examined adhesion-restricted signaling pathways that enable IL-1-induced MMP release in human gingival and murine fibroblasts. Of the seven MMPs and three tissue inhibitors of MMPs screened, IL-1 enhanced release only of MMP3 when cells formed focal adhesions. Inhibition of protein-tyrosine phosphatases (PTPs), which are enriched in focal adhesions, blocked IL-1-induced MMP3 release. Accordingly, in contrast to wild-type cells, fibroblasts null for PTPα did not exhibit IL-1-induced MMP3 release. IL-1 treatment enhanced the recruitment of SHP-2 and PTPα to focal adhesions and the association of PTPα with SHP-2. Pulldown assays confirmed a direct interaction between PTPα and SHP-2, which was dependent on the intact, membrane-proximal phosphatase domain of PTPα. Interactions between SHP-2 and PTPα, recruitment of SHP-2 to focal adhesions, IL-1-induced ERK activation, and MMP3 expression were all blocked by point mutations in the phosphatase domains of PTPα. These data indicate that IL-1-induced signaling through focal adhesions leading to MMP3 release and interactions between SHP-2 and PTPα are dependent on the integrity of the catalytic domains of PTPα.  相似文献   
365.
Spirochetes living in an oxygen-rich environment or when challenged by host immune cells are exposed to reactive oxygen species (ROS). These species can harm/destroy cysteinyl residues, iron-sulphur clusters, DNA and polyunsaturated lipids, leading to inhibition of growth or cell death. Because Borrelia burgdorferi contains no intracellular iron, DNA is most likely not a major target for ROS via Fenton reaction. In support of this, growth of B. burgdorferi in the presence of 5 mM H2O2 had no effect on the DNA mutation rate (spontaneous coumermycin A1 resistance), and cells treated with 10 mM t -butyl hydroperoxide or 10 mM H2O2 show no increase in DNA damage. Unlike most bacteria, B. burgdorferi incorporates ROS-susceptible polyunsaturated fatty acids from the environment into their membranes. Analysis of lipoxidase-treated B. burgdorferi cells by Electron Microscopy showed significant irregularities indicative of membrane damage. Fatty acid analysis of cells treated with lipoxidase indicated that host-derived linoleic acid had been dramatically reduced (50-fold) in these cells, with a corresponding increase in the levels of malondialdehyde by-product (fourfold). These data suggest that B. burgdorferi membrane lipids are targets for attack by ROS encountered in the various stages of the infective cycle.  相似文献   
366.
367.
As arterial partial pressure of O(2) (Pa(O(2))) is reduced during systemic hypoxia, right ventricular (RV) work and myocardial O(2) consumption (MVo(2)) increase. Mechanisms responsible for maintaining RV O(2) demand/supply balance during hypoxia have not been delineated. To address this problem, right coronary (RC) blood flow and RV O(2) extraction were measured in nine conscious, instrumented dogs exposed to normobaric hypoxia. Catheters were implanted in the right ventricle for measuring pressure, in the ascending aorta for measuring arterial pressure and for sampling arterial blood, and in an RC vein. A flow transducer was placed around the RC artery. After recovery from surgery, dogs were exposed to hypoxia in a chamber ventilated with N(2), and blood samples and hemodynamic data were collected as chamber O(2) was reduced progressively to approximately 8%. After control measurements were made, the chamber was opened and the dog was allowed to recover. N(omega)-nitro-L-arginine (L-NNA) was then administered (35 mg/kg, via RV catheter) to inhibit nitric oxide (NO) production, and the hypoxia protocol was repeated. RC blood flow increased during hypoxia due to coronary vasodilation, because RC conductance increased from 0.65 +/- 0.05 to 1.32 +/- 0.12 ml x min(-1) x 100 g(-1) x L-NNA blunted the hypoxia-induced increase in RC conductance. RV O(2) extraction remained constant at 64 +/- 4% as Pa(O(2)) was decreased, but after L-NNA, extraction increased to 70 +/- 3% during normoxia and then to 78 +/- 3% during hypoxia. RV MVo(2) increased during hypoxia, but after L-NNA, MVo(2) was lower at any respective Pa(O(2)). The relationship between heart rate times RV systolic pressure (rate-pressure product) and RV MVo(2) was not altered by l-NNA. To account for L-NNA-mediated decreases in RV MVo(2), O(2) demand/supply variables were plotted as functions of MVo(2). Slope of the conductance-MVo(2) relationship was depressed by L-NNA (P = 0.03), whereas the slope of the extraction-MVo(2) relationship increased (P = 0.003). In summary, increases in RV MVo(2) during hypoxia are met normally by increasing RC blood flow. When NO synthesis is blocked, the large RV O(2) extraction reserve is mobilized to maintain RV O(2) demand/supply balance. We conclude that NO contributes to RC vasodilation during systemic hypoxia.  相似文献   
368.
In this study, we describe a rapid immunoaffinity purification procedure for gel-free tandem mass spectrometry-based analysis of endogenous protein complexes and apply it to the characterization of complexes containing the SRm160 (serine/arginine repeat-related nuclear matrix protein of 160 kDa) splicing coactivator. In addition to promoting splicing, SRm160 stimulates 3'-end processing via its N-terminal PWI nucleic acid-binding domain and is found in a post-splicing exon junction complex that has been implicated in coupling splicing with mRNA turnover, export, and translation. Consistent with these known functional associations, we found that the majority of proteins identified in SRm160-containing complexes are associated with pre-mRNA processing. Interestingly, SRm160 is also associated with factors involved in chromatin regulation and sister chromatid cohesion, specifically the cohesin subunits SMC1alpha, SMC3, RAD21, and SA2. Gradient fractionation suggested that there are two predominant SRm160-containing complexes, one enriched in splicing components and the other enriched in cohesin subunits. Co-immunoprecipitation and co-localization experiments, as well as combinatorial RNA interference in Caenorhabditis elegans, support the existence of conserved and functional interactions between SRm160 and cohesin.  相似文献   
369.
Defects in myeloid cell function in Rac2 knockout mice underline the importance of this isoform in activation of NADPH oxidase and cell motility. However, the specific role of Rac1 in neutrophil function has been difficult to assess since deletion of Rac1 results in embryonic lethality in mice. To elucidate the specific role of Rac1 in neutrophils, we generated mice with a conditional Rac1 deficiency restricted to cells of the granulocyte/monocyte lineage. As observed in Rac2-deficient neutrophils, Rac1-deficient neutrophils demonstrated profound defects in inflammatory recruitment in vivo, migration to chemotactic stimuli, and chemoattractant-mediated actin assembly. In contrast, superoxide production is normal in Rac1-deficient neutrophils but markedly diminished in Rac2 null cells. These data demonstrate that although Rac1 and Rac2 are both required for actin-mediated functions, Rac2 is specifically required for activation of the neutrophil NADPH oxidase.  相似文献   
370.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号