首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1984年   1篇
  1975年   1篇
  1957年   1篇
  1956年   2篇
排序方式: 共有11条查询结果,搜索用时 0 毫秒
11.
Although the superoxide anion radical (O) has been implicated in the phytotoxicity of ozone, (O3), its role has been inferred from indirect evidence based on the activity of oxyradical scavenging systems in the leaf, particularly superoxide dismutase (SOD). Direct observations of radical signals obtained by electron paramagnetic resonance spectrometry (EPR) of intact, attached leaves of bluegrass (Poa pratensis L.) and ryegrass (Lolium perenne L.) and leaf pieces of radish (Raphanus sativus L.) during exposure to 240 μg m?3 O3 in air flowing through the spectrometer cavity have revealed the appearance of a signal with the characteristics of O. The exposures used were insufficient to cause any necrotic injury to the leaves. The appearance of the signal is light-dependent, suggesting that it originates in the chloroplast, and its appearance is reduced in leaves in which the apoplastic pool of ascorbic acid has been enriched by prior vacuum infiltration. In each species, the signal only appeared after about 1 h of exposure to O3, and then increased steadily over the next 4 h. The lability of the species responsible for the signal is such that it can no longer be reliably detected about 15 min after cessation of the exposure to O3. These observations are interpreted as indicating that apoplastic ascorbate initially reduces the production of O, probably by reducing the penetration of O3 into the cell, with any O produced being scavenged by the chloroplastic SOD-per-oxidase system, but its formation from O3 then begins to exceed the capacity of the scavenging systems to remove it.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号