首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   3篇
  103篇
  2017年   2篇
  2016年   1篇
  2013年   7篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2009年   7篇
  2008年   4篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2001年   3篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1972年   2篇
  1971年   2篇
  1968年   1篇
  1967年   1篇
  1960年   1篇
  1954年   1篇
  1924年   1篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
81.
To understand the root function in salt tolerance, radial salt and water transport were studied using reed plants growing in brackish habitat water with an osmotic pressure (πM) of 0.63 MPa. Roots bathed in this medium exuded a xylem sap with NaCl as the major osmolyte and did so even at higher salt concentration (πM up to 1.3 MPa). Exudation was stopped after a small increase of πM (0.26 MPa) using polyethylene glycol 600 as osmolyte. The endodermis of fine lateral roots was found to be the main barrier to radial solute diffusion on an apoplastic path. Apoplastic salt transfer was proven by rapid replacement of stelar Na+ by Li+ in an isomolar LiCl medium. Water fluxes did not exert a true solvent drag on NaCl. Xylem sap concentrations of NaCl in basal internodes of transpiring culms were more than five times higher than in medial and upper ones. It was concluded that the radial NaCl flux was mainly diffusion through the apoplast, and radial water transport, because of the resistance of the cell wall matrix to convective mass flow, was confined to the symplast. Radial salt permeation in roots reduced the water stress exerted by the brackish medium.  相似文献   
82.
83.
Edith R. Saunders' contributions to floral anatomy are briefly considered. Fourteen of her abstracts and discussions and 49 of her lengthier works are cited. An index to 249 families of angiosperms sensu Airy Shaw (1973) keyed to Saunders' publications is given.  相似文献   
84.
Soil salinity restricts plant growth and productivity. Na+ represents the major ion causing toxicity because it competes with K+ for binding sites at the plasma membrane. Inoculation with arbuscular mycorrhizal fungi (AMF) can alleviate salt stress in the host plant through several mechanisms. These may include ion selection during the fungal uptake of nutrients from the soil or during transfer to the host plant. AM benefits could be enhanced when native AMF isolates are used. Thus, we investigated whether native AMF isolated from an area with problems of salinity and desertification can help maize plants to overcome the negative effects of salinity stress better than non‐AM plants or plants inoculated with non‐native AMF. Results showed that plants inoculated with two out the three native AMF had the highest shoot dry biomass at all salinity levels. Plants inoculated with the three native AMF showed significant increase of K+ and reduced Na+ accumulation as compared to non‐mycorrhizal plants, concomitantly with higher K+/Na+ ratios in their tissues. For the first time, these effects have been correlated with regulation of ZmAKT2, ZmSOS1 and ZmSKOR genes expression in the roots of maize, contributing to K+ and Na+ homeostasis in plants colonized by native AMF.  相似文献   
85.
1. Insects lack the acquired immune system of vertebrates, but there is some evidence that insect immunity can be primed against an encountered pathogen to mitigate the intensity of future infections within a life stage. 2. Many invertebrates have multiple life‐history stages separated by complete metamorphosis, but different life stages can often be infected by the same pathogens, and the potential loss of immune priming during metamorphosis could therefore have detrimental effects on the host. Evidence that invertebrate immune priming can persist through metamorphosis is still missing, and consequently it is unclear how host–parasite interactions change across different life‐history stages in the context of infection history. 3. By experimentally manipulating the infection history of the flour beetle Tribolium confusum, we show that intestinal gregarine parasite infections during the larval stage reduced parasite load in adults, demonstrating that a host‐controlled mechanism for parasite resistance can persist through complete metamorphosis in insects. 4. Infections reduced larval developmental rates and increased host mortality but only during the crucial metamorphic stage, indicating that parasites impact multiple life stages. In general, our results demonstrate that invertebrates can show surprisingly robust immune priming despite dramatic physiological changes and protect hosts across completely different life‐history stages.  相似文献   
86.
87.
The taxonomic distribution and evolution of viviparity in Diptera is critically reviewed. The phenomenon ranges from ovoviviparity (eggs deposited at an advanced stage of embryonic development; larva emerges immediately after deposition), through viviparity (larva hatches inside female before deposition) to pupiparity (offspring deposited as pupa). Some Diptera are known to be facultatively viviparous, which is hypothesized to be a step towards the evolution of obligate viviparity. Obligate viviparity is found to comprise unilarviparity (single large larva in maternal uterus) which evolved many times independently, the rare oligolarviparity (more than one but not more than 12 larvae) and multilarviparity (large numbers of developing eggs or larvae in uterus) which is typical for the two largest clades of viviparous Diptera. Unilarviparity is either lecithotrophic (developing larva nourished by yolk of egg) or pseudo-placental (larva nourished by glandular secretions of mother). Viviparity has clearly evolved on many separate occasions in Diptera. It is recorded in 22 families, and this review identifies at least 61 independent origins of viviparity. Six families appear to have viviparity in their ground-plan. Some families have a single evolution of viviparity, others multiple evolutions. Guimaraes' model for the evolution of viviparity in Diptera is tested against phylogenetic information and the adaptive significance of viviparity is reviewed in detail. Possible correlations with life-history parameters (coprophily, parasitism, breeding in ephemeral plant parts, malacophagy and adult feeding habits – especially haematophagy) are analysed critically, as are potential advantages (shorter larval life, less investment in yolk by mother, protection of vulnerable stages, better access to breeding substrates, predation on competitors). Morphological constraints, adaptations and exaptations are reviewed, including the provision of an incubation space for the egg(s), the positioning of the egg(s) in the uterus, and maternal glands. The main morphological adaptations include greater egg size, reduction of egg respiratory filaments, thinning of chorion, modified larval respiratory system and mouthparts, and instar skipping. Female morphology and behaviour is particularly strongly modified for viviparity. The terminalia are shortened, the vagina is more muscular and tracheated, and the ovaries of unilarviparous species have a reduced number of ovarioles with alternate ovulation. Many of the final conclusions are tentative, and a plea is made for more detailed morphological and experimental study of many of the viviparous species. Viviparity in Diptera provides a fascinating example of multiple parallel evolution, and a fertile field for future research.  相似文献   
88.
Using excised low-salt roots of barley and Atriplex hortenslsthe transport of endogenous potassium through the xylem vesselswas studied It was enhanced by nitrate and additionally by sodiumions which apparently replaced vacuolar potassium which wasthen available in the symplasm of root cells for transport tothe shoot Vacuolar Na/K exchange also has been investigatedby measurements of longitudinal ion profiles in single rootsof both species. In Atriplex roots a change in the externalsolution from K+ to Na+ induced an exchange of vacuolar K+ forNa+, in particular in the subapical root tissues and led toincreased K+ transport and loss of K+ from the cortex. In inverseexperiments a change from Na+ to K+ did not induce an exchangeof vacuolar Na+; merely in meristematic tissues Na+—apparentlyfrom the cytoplasm—was extruded in exchange for K+. Inroots of barley seedlings without caryopsis, as in excised roots,a massive exchange of K+ for Na+ was observed in the continuouspresence of external 1.0 mM Na and 0.2 mM K. This exchange alsowas attributed to the vacuole and was most pronounced in theyoung subapical tissues. It did not occur, however, in the correspondingtissues in roots of fully intact barley seedlings. In these,the young tissues retained a relatively high K/Na ratio alsoin their vacuoles. Similarly, contrasting results were obtainedwith intact and excised roots of Zea mays L. Based on theseresults a scheme of the events that lead to selective cationuptake in intact barley roots is proposed. In this scheme acrucial factor of selectivity is sufficient phloem recirculationof K+ by the aid of which K+ rich cortical cells are formednear the root tip. When matured these cells are suggested tomaintain a high cytoplasmic K/Na ratio due to K+ dependent sodiumextrusion at the plasmalemma and due to recovery of vacuolarK+ by Na/K exchange across the tonoplast. Key words: Potassium/Sodium selectivity, Vacuolar exchange, Xylem transport, Hordeum, Zea, Atriplex  相似文献   
89.
Molecular study of mitochondrial and nuclear genes and cytogenetic analysis were performed to examine possible patterns of speciation in the diverse Lophuromys flavopunctatus species complex of Ethiopia. Phylogenetic analysis of mtDNA data resulted in an unresolved bush of ten deeply diverged haplotype groups corresponding to potential species either well supported by various types of character or 'cryptic'. The cytogenetic analysis showed representatives of five of these mtDNA lineages to share an identical karyotype (2 n  = 70, NFa = 84), that has not been found previously in Ethiopia. One of them, L.  cf.  sikapusi , being a member of the L. flavopunctatus species complex, demonstrates remarkable morphological similarity to representatives of another species complex, L. sikapusi s.l ., which might be considered as a result of convergent evolution in analogous environments. Analysis of RAPD data suggests that at least two mtDNA types might have been subject to interspecific transfer due to hybridization. In the case of two sympatric haplotypes of L. brunneus we may assume that the contemporary pattern of variation between them can be explained by relatively recent hybridization with another distinct species, L. flavopunctatus . The formation of two groups belonging to distinct mitochondrial lineages within northern populations could be associated with more complex processes including ancient hybridization.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 301–316.  相似文献   
90.
Rozko.  R Knuts.  L 《昆虫分类学报》1991,13(1):65-70
本文记述了采自中国东北沼蝇科的二个新种:Pherbellia orientalis sp.nov.属于该属的P.dorsata种团,其主要特征是翅部分为黑色,前足基跗节为鲜明的白色;Elgivamanchuricasp.nov.与该属的一个种E.divisa(Loew)相似,但可从新种光裸的前胸腹板和不同形状构造的雄性外生殖器予以区别。 新种的模式标本保存于德国波恩Alexander Koenig博物馆。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号