全文获取类型
收费全文 | 110篇 |
免费 | 12篇 |
专业分类
122篇 |
出版年
2020年 | 1篇 |
2017年 | 2篇 |
2016年 | 2篇 |
2015年 | 4篇 |
2014年 | 3篇 |
2013年 | 4篇 |
2012年 | 2篇 |
2011年 | 11篇 |
2010年 | 7篇 |
2009年 | 3篇 |
2008年 | 4篇 |
2007年 | 3篇 |
2006年 | 1篇 |
2005年 | 4篇 |
2004年 | 2篇 |
2003年 | 3篇 |
2002年 | 1篇 |
2001年 | 4篇 |
2000年 | 2篇 |
1999年 | 3篇 |
1998年 | 5篇 |
1996年 | 3篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1992年 | 5篇 |
1991年 | 2篇 |
1990年 | 4篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1984年 | 2篇 |
1983年 | 2篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 3篇 |
1978年 | 2篇 |
1977年 | 4篇 |
1976年 | 2篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1969年 | 1篇 |
1958年 | 1篇 |
排序方式: 共有122条查询结果,搜索用时 15 毫秒
21.
Light-induced phosphorylation of rhodopsin in bovine rod outer segment disk membranes inhibits the binding of three carboxyl-terminal-specific anti-rhodopsin antibodies and the cleavage of the carboxyl-terminal region of rhodopsin by trypsin and Staphylococcus aureus V-8 protease. Two monoclonal antibodies, rho 3A6 and rho 1C5, which previously have been shown to preferentially bind to the 8'-12' and the 9'-18' carboxyl-terminal segments of rhodopsin, respectively, are both highly sensitive to phosphorylation. When an average of one phosphate is incorporated per rhodopsin, the binding reactivity of rhodopsin for these antibodies decreases to 30% that of nonphosphorylated rhodopsin as measured in radioimmune competition assays. Reactivity of the rho 1D4 antibody whose primary binding site is localized in the 1'-8' C-terminal segment of rhodopsin is unaffected at this level of phosphorylation but decreases to 30% when three phosphates on average are incorporated per rhodopsin. Direct binding studies using 125I-labeled antibodies indicate that phosphorylation of rhodopsin decreases the maximum extent of rho 3A6 and rho 1C5 binding to rhodopsin. For rho 1D4, the maximum extent of binding is unaffected by phosphorylation, but the dissociation constant is increased by 10-fold. Phosphorylation of rhodopsin also inhibits cleavage of the 1'-9' and 1'-7' carboxyl-terminal peptides by trypsin and S. aureus V-8 protease, respectively. When an average of one phosphate per rhodopsin is incorporated, cleavage decreases to 40% that of nonphosphorylated rhodopsin as measured by high-performance liquid chromatography. Phosphorylation of rhodopsin had no effect on S. aureus cleavage of rhodopsin into the F1 (Mr 25 000) and F2 (Mr 12 000) fragments.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
22.
ABCR, also known as ABCA4, is a member of the superfamily of ATP binding cassette transporters that is believed to transport retinal or retinylidene-phosphatidylethanolamine across photoreceptor disk membranes. Mutations in the ABCR gene are responsible for Stargardt macular dystrophy and related retinal dystrophies that cause severe loss in vision. ABCR consists of two tandemly arranged halves each containing a membrane spanning segment followed by a large extracellular/lumen domain, a multi-spanning membrane domain, and a nucleotide binding domain (NBD). To define the role of each NBD, we examined the nucleotide binding and ATPase activities of the N and C halves of ABCR individually and co-expressed in COS-1 cells and derived from trypsin-cleaved ABCR in disk membranes. When disk membranes or membranes from co-transfected cells were photoaffinity labeled with 8-azido-ATP and 8-azido-ADP, only the NBD2 in the C-half bound and trapped the nucleotide. Co-expressed half-molecules displayed basal and retinal-stimulated ATPase activity similar to full-length ABCR. The individually expressed N-half displayed weak 8-azido-ATP labeling and low basal ATPase activity that was not stimulated by retinal, whereas the C-half did not bind ATP and exhibited little if any ATPase activity. Purified ABCR contained one tightly bound ADP, presumably in NBD1. Our results indicate that only NBD2 of ABCR binds and hydrolyzes ATP in the presence or absence of retinal. NBD1, containing a bound ADP, associates with NBD2 to play a crucial, non-catalytic role in ABCR function. 相似文献
23.
Robson Sartorello Alexandre Budu Piero Bagnaresi Carlos AH Fernandes Paloma M. Sato Vânia B. Bueno Marcos RM Fontes Pedro L. Oliveira Gabriela O. Paiva‐Silva Simone V. Alves Luis ES Netto Luiz H. Catalani Celia RS Garcia 《Cell biology international》2010,34(8):859-865
The cellular traffic of haem during the development of the human malaria parasite Plasmodium falciparum, through the stages R (ring), T (trophozoite) and S (schizonts), was investigated within RBC (red blood cells). When Plasmodium cultures were incubated with a fluorescent haem analogue, ZnPPIX (Zn protoporphyrin IX) the probe was seen at the cytoplasm (R stage), and the vesicle‐like structure distribution pattern was more evident at T and S stages. The temporal sequence of ZnPPIX uptake byP. falciparum‐infected erythrocytes shows that at R and S stages, a time‐increase acquisition of the porphyrin reaches the maximum fluorescence distribution after 60 min; in contrast, at the T stage, the maximum occurs after 120 min of ZnPPIX uptake. The difference in time‐increase acquisition of the porphyrin is in agreement with a maximum activity of haem uptake at the T stage. To gain insights into haem metabolism, recombinant PfHO (P. falciparum haem oxygenase) was expressed, and the conversion of haem into BV (biliverdin) was detected. These findings point out that, in addition to haemozoin formation, the malaria parasite P. falciparum has evolved two distinct mechanisms for dealing with haem toxicity, namely, the uptake of haem into a cellular compartment where haemozoin is formed and HO activity. However, the low Plasmodium HO activity detected reveals that the enzyme appears to be a very inefficient way to scavenge the haem compared with the Plasmodium ability to uptake the haem analogue ZnPPIX and delivering it to the food vacuole. 相似文献
24.
ABCR is a member of the ABCA subclass of ATP binding cassette transporters that is responsible for Stargardt macular disease and implicated in retinal transport across photoreceptor disc membranes. It consists of a single polypeptide chain arranged in two tandem halves, each having a multi-spanning membrane domain followed by a nucleotide binding domain. To delineate between several proposed membrane topological models, we have identified the exocytoplasmic (extracellular/lumen) N-linked glycosylation sites on ABCR. Using trypsin digestion, site-directed mutagenesis, concanavalin A binding, and endoglycosidase digestion, we show that ABCR contains eight glycosylation sites. Four sites reside in a 600-amino acid exocytoplasmic domain of the N-terminal half between the first transmembrane segment H1 and the first multi-spanning membrane domain, and four sites are in a 275-amino acid domain of the C half between transmembrane segment H7 and the second multi-spanning membrane domain. This leads to a model in which each half has a transmembrane segment followed by a large exocytoplasmic domain, a multi-spanning membrane domain, and a nucleotide binding domain. Other ABCA transporters, including ABC1 linked to Tangier disease, are proposed to have a similar membrane topology based on sequence similarity to ABCR. Studies also suggest that the N and C halves of ABCR are linked through disulfide bonds. 相似文献
25.
Background
Genetic mutations in several ubiquitously expressed RNA splicing genes such as PRPF3, PRP31 and PRPC8, have been found to cause retina-specific diseases in humans. To understand this intriguing phenomenon, most studies have been focused on testing two major hypotheses. One hypothesis assumes that these mutations interrupt retina-specific interactions that are important for RNA splicing, implying that there are specific components in the retina interacting with these splicing factors. The second hypothesis suggests that these mutations have only a mild effect on the protein function and thus affect only the metabolically highly active cells such as retinal photoreceptors.Methodology/Principal Findings
We examined the second hypothesis using the PRPF3 gene as an example. We analyzed the spatial and temporal expression of the PRPF3 gene in mice and found that it is highly expressed in retinal cells relative to other tissues and its expression is developmentally regulated. In addition, we also found that PRP31 and PRPC8 as well as snRNAs are highly expressed in retinal cells.Conclusions/Significance
Our data suggest that the retina requires a relatively high level of RNA splicing activity for optimal tissue-specific physiological function. Because the RP18 mutation has neither a debilitating nor acute effect on protein function, we suggest that retinal degeneration is the accumulative effect of decades of suboptimal RNA splicing due to the mildly impaired protein. 相似文献26.
27.
The cGMP-gated channel and related glutamic acid-rich proteins interact with peripherin-2 at the rim region of rod photoreceptor disc membranes 总被引:1,自引:0,他引:1
The rod cGMP-gated channel is localized in the plasma membrane of rod photoreceptor outer segments, where it plays a central role in phototransduction. It consists of alpha- and beta-subunits that assemble into a heterotetrameric protein. Each subunit contains structural features characteristic of nucleotide-gated channels, including a cGMP-binding domain, multiple membrane-spanning segments, and a pore region. In addition, the beta-subunit has a large glutamic acid- and proline-rich region called GARP that is also expressed as two soluble protein variants. Using monoclonal antibodies in conjunction with immunoprecipitation, cross-linking, and electrophoretic techniques, we show that the cGMP-gated channel associates with the Na/Ca-K exchanger in the rod outer segment plasma membrane. This complex and soluble GARP proteins also interact with peripherin-2 oligomers in the rim region of outer segment disc membranes. These results suggest that channel/peripherin protein interactions mediated by the GARP part of the channel beta-subunit play a role in connecting the rim region of discs to the plasma membrane and in anchoring the channel.exchanger complex in the rod outer segment plasma membrane. 相似文献
28.
Cloning of the cDNA for a novel photoreceptor membrane protein (rom-1) identifies a disk rim protein family implicated in human retinopathies. 总被引:1,自引:0,他引:1
The molecules essential to the continual morphogenesis and shedding of the opsin-containing disks of vertebrate photoreceptors are largely unknown. We describe a 37 kd protein, rom-1, which is 35% identical and structurally similar to peripherin/retinal degeneration slow (rds). Like peripherin, rom-1 is a retina-specific integral membrane protein localized to the photoreceptor disk rim. The two proteins are similarly oriented in the membrane, and each has a highly conserved (15/16 residues) cysteine- and proline-rich domain in the disk lumen. Although both rom-1 and peripherin form disulfide-linked dimers, they do not form heterodimers with each other, but appear to associate noncovalently. These results suggest both that rom-1 and peripherin are functionally related members of a new photoreceptor-specific protein family and that rom-1, like peripherin, is likely to be important to outer segment morphogenesis. The association of mutations in RDS with retinitis pigmentosa indicates that ROM1 is a strong candidate gene for human retinopathies. 相似文献
29.
ABCR is a photoreceptor-specific ATP-binding cassette transporter that has been linked to various retinal diseases, including Stargardt macular dystrophy, and implicated in retinal transport across rod outer segment (ROS) membranes. We have examined the ATPase and GTPase activity of detergent-solubilized and reconstituted ABCR. 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonic acid-solubilized ABCR had ATPase and GTPase activity (K(m) approximately 75 micrometer V(max) approximately 200 nmol/min/mg) that was stimulated 1.5-2-fold by all-trans-retinal and dependent on phospholipid and dithiothreitol. The K(m) for ATP decreased to approximately 25 micrometer after reconstitution, whereas the V(max) was strongly dependent on the lipid used for reconstitution. ABCR reconstituted in ROS phospholipid had a V(max) for basal and retinal activated ATPase activity that was 4-6 times higher than for ABCR in soybean or brain phospholipid. This enhanced activity was mainly due to the high phosphatidylethanolamine (PE) content of ROS membranes. PE was also required for retinoid-stimulated ATPase activity. ATPase activity of ABCR was stimulated by the addition of N-retinylidene-PE but not the reduced derivative, retinyl-PE. ABCR expressed in COS-1 cells also exhibited retinal-stimulated ATPase activity similar to that of the native protein. These results support the view that ABCR is an active retinoid transporter, the nucleotidase activity of which is strongly influenced by its lipid environment. 相似文献
30.
Block of outward current in cardiac purkinje fibers by injection of quaternary ammonium ions 总被引:1,自引:5,他引:1 下载免费PDF全文
We have studied the effects of iontophoretic injection of the quaternary ammonium compounds tetraethylammonium (TEA) and tetrabutylammonium (TBA) in cardiac purkinje fibers. We find that TBA(+) is a more effective blocker than TEA(+), but injection of either compound reduces the time-dependent outward plateau currents, transient outward current (I(to)), and the delayed rectifier (I(x)). Our findings provide evidence that these outward cardiac currents are carried by channels that in some respects are pharmacologically similar to squid axon potassium channels. We demonstrate that this procedure is a new tool that can be useful in the analysis of membrane currents in the heart. 相似文献