首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   9篇
  2021年   2篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   4篇
  2012年   6篇
  2011年   6篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   5篇
  2006年   7篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1992年   1篇
  1989年   2篇
  1988年   1篇
  1985年   2篇
  1983年   1篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有87条查询结果,搜索用时 46 毫秒
51.
MAPKAPK-2 (MK2) is a protein kinase activated downstream of p38-MAPK which phosphorylates the small heat shock proteins HSP27 and αB crystallin and modulates p38-MAPK cellular distribution. p38-MAPK activation is thought to contribute to myocardial ischemic injury; therefore, we investigated MK2 effects on ischemic injury and p38 cellular localization using MK2-deficient mice (KO). Immunoblotting of extracts from Langendorff-perfused hearts subjected to aerobic perfusion or global ischemia or reperfusion showed that the total and phosphorylated p38 levels were significantly lower in MK2−/− compared to MK2+/+ hearts at baseline, but the ratio of phosphorylated/total p38 was similar. These results were confirmed by cellular fractionation and immunoblotting for both cytosolic and nuclear compartments. Furthermore, HSP27 and αB crsytallin phosphorylation were reduced to baseline in MK2−/− hearts. On semiquantitative immunofluorescence laser confocal microscopy of hearts during aerobic perfusion, the mean total p38 fluorescence was significantly higher in the nuclear compared to extranuclear (cytoplasmic, sarcomeric, and sarcolemmal compartments) in MK2+/+ hearts. However, although the increase in phosphorylated p38 fluorescence intensity in all compartments following ischemia in MK2+/+ hearts was lost in MK2−/− hearts, it was basally elevated in nuclei of MK2−/− hearts and was similar to that seen during ischemia in MK2+/+ hearts. Despite these differences, similar infarct volumes were recorded in wild-type MK2+/+ and MK2−/− hearts, which were decreased by the p38 inhibitor SB203580 (1 μM) in both genotypes. In conclusion, p38 MAPK-induced myocardial ischemic injury is not modulated by MK2. However, the absence of MK2 perturbs the cellular distribution of p38. The preserved nuclear distribution of active p38 MAPK in MK2−/− hearts and the conserved response to SB203580 suggests that activation of p38 MAPK may contribute to injury independently of MK2. Diana A Gorog and Rita I Jabr made equal contributions to this work.  相似文献   
52.
Rho and Rab family GTPases play a key role in cytoskeletal organization and vesicular trafficking, but the exact mechanisms by which these GTPases regulate polarized cell growth are incompletely understood. A previous screen for genes that interact with CDC42, which encodes a Rho GTPase, found SWF1/PSL10. Here, we show Swf1p, a member of the DHHC-CRD family of palmitoyltransferases, localizes to actin cables and cortical actin patches in Saccharomyces cerevisiae. Deletion of SWF1 results in misorganization of the actin cytoskeleton and decreased stability of actin filaments in vivo. Cdc42p localization depends upon Swf1p primarily after bud emergence. Importantly, we revealed that the actin regulating activity of Swf1p is independent of its DHHC motif. A swf1 mutant, in which alanine substituted for the cysteine required for the palmitoylation activity of DHHC-CRD proteins, displayed wild-type actin organization and Cdc42p localization. Bgl2p-marked exocytosis was found wild type in this mutant, although invertase secretion was impaired. These data indicate Swf1p has at least two distinct functions, one of which regulates actin organization and Bgl2p-marked secretion. This report is the first to link the function of a DHHC-CRD protein to Cdc42p and the regulation of the actin cytoskeleton.  相似文献   
53.

Background

MicroRNAs are modifiers of gene expression, acting to reduce translation through either translational repression or mRNA cleavage. Recently, it has been shown that some microRNAs can act to promote or suppress cell transformation, with miR-17-92 described as the first oncogenic microRNA. The association of miR-17-92 encoded microRNAs with a surprisingly broad range of cancers not only underlines the clinical significance of this locus, but also suggests that miR-17-92 may regulate fundamental biological processes, and for these reasons miR-17-92 has been considered as a therapeutic target.

Results

In this study, we show that miR-17-92 is a cell cycle regulated locus, and ectopic expression of a single microRNA (miR-17-5p) is sufficient to drive a proliferative signal in HEK293T cells. For the first time, we reveal the mechanism behind this response - miR-17-5p acts specifically at the G1/S-phase cell cycle boundary, by targeting more than 20 genes involved in the transition between these phases. While both pro- and anti-proliferative genes are targeted by miR-17-5p, pro-proliferative mRNAs are specifically up-regulated by secondary and/or tertiary effects in HEK293T cells.

Conclusion

The miR-17-5p microRNA is able to act as both an oncogene and a tumor suppressor in different cellular contexts; our model of competing positive and negative signals can explain both of these activities. The coordinated suppression of proliferation-inhibitors allows miR-17-5p to efficiently de-couple negative regulators of the MAPK (mitogen activated protein kinase) signaling cascade, promoting growth in HEK293T cells. Additionally, we have demonstrated the utility of a systems biology approach as a unique and rapid approach to uncover microRNA function.  相似文献   
54.
The methylotrophic yeast Pichia pastoris is widely used for the production of recombinant glycoproteins. With the aim to generate biologically active 15N-labeled glycohormones for conformational studies focused on the unravelling of the NMR structures in solution, the P. pastoris strains GS115 and X-33 were explored for the expression of human chorionic gonadotropin (phCG) and human follicle-stimulating hormone (phFSH). In agreement with recent investigations on the N-glycosylation of phCG, produced in P. pastoris GS115, using ammonia/glycerol-methanol as nitrogen/carbon sources, the N-glycosylation pattern of phCG, synthesized using NH4Cl/glucose–glycerol–methanol, comprised neutral and charged, phosphorylated high-mannose-type N-glycans (Man8–15GlcNAc2). However, the changed culturing protocol led to much higher amounts of glycoprotein material, which is of importance for an economical realistic approach of the aimed NMR research. In the context of these studies, attention was also paid to the site specific N-glycosylation in phCG produced in P. pastoris GS115. In contrast to the rather simple N-glycosylation pattern of phCG expressed in the GS115 strain, phCG and phFSH expressed in the X-33 strain revealed, besides neutral high-mannose-type N-glycans, also high concentrations of neutral hypermannose-type N-glycans (Manup-to-30GlcNAc2). The latter finding made the X-33 strain not very suitable for generating 15N-labeled material. Therefore, 15N-phCG was expressed in the GS115 strain using the new optimized protocol. The 15N-enrichment was evaluated by 15N-HSQC NMR spectroscopy and GLC-EI/MS. Circular dichroism studies indicated that 15N-phCG/GS115 had the same folding as urinary hCG. Furthermore, 15N-phCG/GS115 was found to be similar to the unlabeled protein in every respect as judged by radioimmunoassay, radioreceptor assays, and in vitro bioassays. Véronique Blanchard and Rupali A. Gadkari contributed equally.  相似文献   
55.
Mosquitoes were infected by intrathoracic inoculation. About 95% head squashes were positive for dengue virus antigen on the 15th post infection day (PID). Esterase activity was determined in the homogenates prepared from the salivary glands and midguts on different PIDs of dengue virus inoculated and control mosquitoes showed that it was consistently higher in the virus-infected batches.  相似文献   
56.
57.
The effect of nerve growth factor (NGF), a substance that promotes the differentiation and maintenance of certain neurons, was studied via scanning electron microscopy utilizing the PC12 clonal NGF-responsive pheochromocytoma cell line. After 2-4 d of exposure to NGF, these cells acquire many of the properties of normal sympathic neurons. However, by phase microscopy, no changes are discernible within the first 12-18 h. Since the primary NGF receptor appears to be a membrane receptor, it seemed likely that some of the initial responses to the factor may be surface related. PC12 cells maintained without NGF are round to ovoid and have numerous microvilli and small blebs. After the addition of NGF, there is a rapidly initiated sequential change in the cell surface. Ruffles appear over the dorsal surface of the cells with 1 min, become prominent by 3 min, and almost disappear by 7 min. Microvilli, conversely, disappear as the dorsal ruffles become prominent. Ruffles are seen at the the periphery of cell at 3 min, are prominent on most of the cells by 7 min and are gone by 15 min. The surface remains smooth from 15 min until 45 min when large blebs appear. The large blebs are present on most cells at 2 h and are gone by 4 h. The surface remains relatively smooth until 6-7 h of NGF treatment, when microvilli reappear as small knobs. These microvilli increase in both number and length to cover the cell surface by 10 h. These changes were not observed with other basic proteins, with α-bungarotoxin (which binds specifically to PC12 membranes), and were not affected by an RNA synthesis inhibitor that blocks initiation of neurite outgrowth. Changes in the cell surface architecture appear to be among the earlist NGF responses yet detected and may represent or reflect primary events in the mechanism of the factor’s action.  相似文献   
58.
The relative regulatory roles of the pituitary gonadotropins, luteinizing hormone and follicle stimulating hormone in the spermatogonial proliferation has been studied using specific antibodies against these hormones in the immature rats. Immunoneutralization of lu teinizing hormone for 7 days resulted in significant reduction in tetraploid cells and total absence of haploid cells,while there was a relative increase in the diploid population. This was also accomopanied by a decrease in spermatogonial proliferation as indicated by a decrease in [3H] thymidine incorpor-ation into DNA by purified spermatogonia. Administration of follicle stimulating hormone a/s for 7 days also caused a significant decrease in the rate of spermatogonial proliferation. Withdrawal of follicle stimulating hormone led to a significant reduction in tetraploid and haploid cells. However interestingly,it failed to totally abolish the appearance of these cells. Administration of testosterone (3 mg/day/rat) for 2 days along with the gonadotropin a/s could partially reverse the effect on spermatogonial proliferation. It is concluded that (i) both luteinizing hormone and follicle stimulating hormone are involved in spermatogonial proliferation, (ii) lack of testosterone consequent of the neutralization of luteinizing hormone prevented the entry of spermatogonial cells into meiosis, (iii) testosterone may be involved in spermatogonia] proliferation providing a mitotic signal and (v) both follicle stimulating hormone and testosterone act synergistically and lack of any one of the hormones results in impairment of spermatogonial proliferation. A part of the data was presented at the 16th International Congress of Biochemistry and Molecular Biology, New Delhi, September 1994.  相似文献   
59.
NK cells are key effectors of innate immunity and host survival during cytomegalovirus (CMV) infection. Innate murine CMV (MCMV) resistance in MA/My mice requires Ly49H/m157-independent H-2k-linked NK cell control. Here we show that replacement of MA/My H-2k with C57L H-2b susceptibility genes led to a remarkable loss of innate virus immunity, though NK gamma interferon was induced in H-2b and H-2k strains shortly after infection. Thus, H-2b genes expressed in C57L or MA/My.L-H2b are sufficient in alerting NK cells to intrusion but fail to support NK restraint of viral infection. In addition, novel H-2 recombinant strains were produced and utilized in a further refinement of a critical genetic interval controlling innate H-2k-linked MCMV resistance. Importantly, this analysis excluded the gene interval from Kk class I through class II. The responsible gene(s) therefore resides in an interval spanning Dk class Ia and more-distal major histocompatibility complex (MHC) nonclassical class Ib genes. Recently, the NK activation receptor Ly49P and MHC class I Dk proteins were genetically implicated in MCMV resistance, in part because Ly49P-expressing reporter T cells could specifically bind Dk molecules on MCMV-infected mouse embryonic fibroblasts (MEFs). However, as we found that H-2k innate resistance differs in the C57L or MA/My backgrounds and because MCMV very efficiently downregulates H-2k class I proteins in L929 cells and primary MEFs shortly after infection, a Ly49P/Dk model should not fully explain H-2k-linked MCMV resistance.  相似文献   
60.
A new series of 1,3-diketone, heterocyclic and α,β-unsaturated derivatives were synthesized and evaluated for their AhR antagonist activity using zebrafish and mammalian cells. Compounds 1b, 2c, 3b and 5b showed significant AhR antagonist activity in a transgenic zebrafish model. Among them, compound 3b, and 5b were found to have excellent AhR antagonist activity with IC50 of 3.36 nM and 8.3 nM in a luciferase reporter gene assay. In stem cell proliferation assay, compound 5b elicited marked HSC expansion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号