首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   13篇
  245篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   19篇
  2014年   14篇
  2013年   9篇
  2012年   16篇
  2011年   15篇
  2010年   12篇
  2009年   8篇
  2008年   9篇
  2007年   4篇
  2006年   8篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   9篇
  2001年   7篇
  2000年   1篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   6篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   1篇
  1981年   1篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1968年   1篇
  1963年   1篇
排序方式: 共有245条查询结果,搜索用时 0 毫秒
21.
22.

Background

Many arachnids possess adhesive pads on their feet that help them climb smooth surfaces and capture prey. Spider and gecko adhesives have converged on a branched, hairy structure, which theoretically allows them to adhere solely by dry (solid-solid) intermolecular interactions. Indeed, the consensus in the literature is that spiders and their smooth-padded relatives, the solifugids, adhere without the aid of a secretion.

Methodology and Principal Findings

We investigated the adhesive contact zone of living spiders, solifugids and mites using interference reflection microscopy, which allows the detection of thin liquid films. Like insects, all the arachnids we studied left behind hydrophobic fluid footprints on glass (mean refractive index: 1.48–1.50; contact angle: 3.7–11.2°). Fluid was not always secreted continuously, suggesting that pads can function in both wet and dry modes. We measured the attachment forces of single adhesive setae from tarantulas (Grammostola rosea) by attaching them to a bending beam with a known spring constant and filming the resulting deflection. Individual spider setae showed a lower static friction at rest (26%±2.8 SE of the peak friction) than single gecko setae (Thecadactylus rapicauda; 96%±1.7 SE). This may be explained by the fact that spider setae continued to release fluid after isolation from the animal, lubricating the contact zone.

Significance

This finding implies that tarsal secretions occur within all major groups of terrestrial arthropods with adhesive pads. The presence of liquid in an adhesive contact zone has important consequences for attachment performance, improving adhesion to rough surfaces and introducing rate-dependent effects. Our results leave geckos and anoles as the only known representatives of truly dry adhesive pads in nature. Engineers seeking biological inspiration for synthetic adhesives should consider whether model species with fluid secretions are appropriate to their design goals.  相似文献   
23.
24.
25.
Locust wings are able to sustain millions of cycles of mechanical loading during the lifetime of the insect. Previous studies have shown that cross veins play an important role in delaying crack propagation in the wings. Do cross veins thus also influence the fatigue behaviour of the wings? Since many important fatigue parameters are not experimentally accessible in a small biological sample, here we use the finite element (FE) method to address this question numerically. Our FE model combines a linear elastic material model, a direct cyclic approach and the Paris law and shows results which are in very good agreement with previously reported experimental data. The obtained results of our study show that cross veins indeed enhance the durability of the wings by temporarily stopping cracks. The cross veins further distribute the stress over a larger area and therefore minimize stress concentrations. In addition, our work indicates that locust hind wings have an endurance limit of about 40% of the ultimate tensile strength of the wing material, which is comparable to many engineering materials. The comparison of the results of the computational study with predictions of two most commonly used fatigue failure criteria further indicates that the Goodman criterion can be used to roughly predict the failure of the insect wing. The methodological framework presented in our study could provide a basis for future research on fatigue of insect cuticle and other biological composite structures.  相似文献   
26.
Uptake of cholesterol-containing lipoproteins by macrophages in the arterial intima is believed to be an important step in the pathogenesis of atherosclerosis. There are a number of possible mechanisms by which macrophages might accumulate cholesterol, and one that has attracted much interest recently involves the uptake of oxidatively modified low density lipoprotein (LDL) via a specific cell surface receptor, termed the scavenger or acetyl-LDL receptor. Previous studies have shown that chemical derivatization of LDL with reagents that result in neutralization of the charge of lysine amino groups also allows recognition by this receptor. As well, it has been shown that oxidation of LDL is accompanied by a decrease in free lysine groups and binding of lipid products to apolipoprotein B. The present studies were done to further characterize the receptor-binding domain on oxidized LDL. It was found that LDL could be modified by incubation with water-soluble products derived from autoxidized unsaturated fatty acids under conditions that inhibited oxidation of the LDL itself. The LDL modified in this way had increased electrophoretic mobility but showed no evidence of the oxidative damage that typifies LDL oxidized by exposure to metal ions. Furthermore, the oxidation product-modified LDL was rapidly degraded by cultured macrophages through the scavenger receptor pathway. Bovine albumin modified by oxidation products also showed greatly accelerated degradation by macrophages. When analyzed by reverse-phase high pressure liquid chromatography, the reactive oxidation products appeared less polar than fatty acids or simple medium-chain aldehydes. When treated with the carbonyl reagent 2,4-dinitrophenylhydrazine, the reactive fractions yielded derivatives, some of which were identified by mass spectrometry as hydrazones of nonenal, heptenal, pentenal, and crotonaldehyde. A series of 2-unsaturated aldehydes (acrolein to 2-nonenal) were all found to modify LDL, but none of these aldehyde-modified LDLs were recognized by the scavenger receptor of macrophages and all were degraded much more slowly by these cells than LDL modified with oxidation products. Furthermore, copper-oxidized LDL had only very slight immunoreactivity toward a panel of antibodies specific for adducts of simple 2-unsaturated aldehydes. Analysis of underivatized autoxidized fatty acids by coupled liquid chromatography/thermospray mass spectrometry revealed compounds with m/z corresponding to M+17, M+31, and 2M+31 in fractions that were capable of modifying LDL. The unoxidized fatty acids showed a dominant peak at M-1. These results indicate that the scavenger receptor of macrophages can recogn  相似文献   
27.
28.
Tendinopathy refers to the clinical presentation of activity-related pain, focal tendon tenderness, and intratendinous imaging changes. The underlying pathology was once thought to be due to inflammation ('tendinitis'), but is now considered to predominantly result from degeneration ('tendinosis'). While some progress has been made in understanding tendinosis, the condition remains poorly understood and a need exists for suitable exploratory preclinical models. It is unlikely that one suitable model exists because of the complexity of the underlying pathology and myriad of possible causes. This paper provides an overview of current models utilized in tendinopathy research. It progresses hierarchically from in vitro and ex vivo models to in vivo models. For each model, rationale for use, pertinent findings, and advantages and disadvantages are discussed. By improving on these models, new methods for the prevention and treatment of tendinopathy may be explored with the ultimate outcome being a reduction in the occurrence and effects of the condition in humans.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号