首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1793篇
  免费   389篇
  2016年   26篇
  2015年   44篇
  2014年   36篇
  2013年   59篇
  2012年   76篇
  2011年   84篇
  2010年   40篇
  2009年   35篇
  2008年   63篇
  2007年   76篇
  2006年   66篇
  2005年   50篇
  2004年   64篇
  2003年   77篇
  2002年   54篇
  2001年   85篇
  2000年   61篇
  1999年   67篇
  1998年   26篇
  1997年   23篇
  1996年   35篇
  1995年   25篇
  1994年   23篇
  1993年   18篇
  1992年   70篇
  1991年   50篇
  1990年   50篇
  1989年   55篇
  1988年   48篇
  1987年   51篇
  1986年   41篇
  1985年   51篇
  1984年   37篇
  1983年   38篇
  1982年   25篇
  1981年   23篇
  1979年   22篇
  1978年   29篇
  1977年   27篇
  1976年   17篇
  1975年   19篇
  1974年   31篇
  1973年   22篇
  1972年   20篇
  1971年   25篇
  1970年   25篇
  1969年   23篇
  1968年   24篇
  1967年   17篇
  1966年   19篇
排序方式: 共有2182条查询结果,搜索用时 15 毫秒
111.
Histone mRNA, labeled with 32P or 3H-methionine during the S phase of partially synchronized HeLa cells, was isolated from the polyribosomes and purified as a “9S” component by sucrose gradient sedimentation. We identified two types of 5′ terminals, m7G(5′)pppNmpN and m7G(5′)pppNm-pNmpN, in which the first methylated nucleoside is 7-methylguanosine, the second is either N6,2′-O-dimethyladenosine, 2′-O-methyladenosine, or 2′-O-methylguanosine, and the third is 2′-O-methyluridine, 2′-O-methylcytidine, or 2′-O-methyladenosine. Approximately 1.7% of the 32P label was present in the 5′ terminal structures. Assuming a similar specific radioactivity for all phosphates, this percentage corresponds to an average of one terminal per 335 nucleotides. Histone mRNA differed from bulk polyadenylylated mRNA of HeLa cells in lacking significant amounts of 2′-O-methyluridine or 2′-O-methylcytidine in the second position of the 5′ terminal oligonucleotide and in lacking N6-methyladenosine residues at internal positions.  相似文献   
112.
Guanylyl- and methyltransferases, isolated from purified vaccinia virus, were used to specifically label the 5′ ends of the genome RNAs of influenza A and B viruses. All eight segments were labeled with [α-32P]guanosine 5′-triphosphate or S-adenosyl[methyl-3H]methionine to form “cap” structures of the type m7G(5′)pppNm-, of which unmethylated (p)ppN- represents the original 5′ end. Further analyses indicated that m7G(5′)pppAm, m7G(5′)pppAmpGp, and m7G(5′)pppAmpGpUp were released from total and individual labeled RNA segments by digestion with nuclease P1, RNase T1, and RNase A, respectively. Consequently, the 5′-terminal sequences of most or all individual genome RNAs of influenza A and B viruses were deduced to be (p)ppApGpUp. The presence of identical sequences at the ends of RNA segments of both types of influenza viruses indicates that they have been specifically conserved during evolution.  相似文献   
113.
114.
Choleragen exerts its effect on cells through activation of adenylate cyclase. Choleragen initially interacts with cells through binding of the B subunit of the toxin to the ganglioside GM1 on the cell surface. Subsequent events are less clear. Patching or capping of toxin on the cell surface may be an obligatory step in choleragen action. Studies in cell-free systems have demonstrated that activation of adenylate cyclase by choleragen requires NAD. In addition to NAD, requirements have been observed for ATP, GTP, and calcium-dependent regulatory protein. GTP also is required for the expression of choleragen-activated adenylate cyclase. In preparations from turkey erythrocytes, choleragen appears to inhibit an isoproterenol-stimulated GTPase. It has been postulated that by decreasing the activity of a specific GTPase, choleragen would stabilize a GTP-adenylate cyclase complex and maintain the cyclase in an activated state. Although the holotoxin is most effective in intact cells, with the A subunit having 1/20th of its activity and the B subunit (choleragenoid) being inactive, in cell-free systems the A subunit, specifically the A1 fragment, is required for adenylate cyclase activation. The B protomer is inactive. Choleragen, the A subunit, or A1 fragment under suitable conditions hydrolyzes NAD to ADP-ribose and nicotinamide (NAD glycohydrolase activity) and catalyzes the transfer of the ADP-ribose moiety of NAD to the guandino group of arginine (ADP-ribosyltransferase activity). The NAD glycohydrolase activity is similar to that exhibited by other NAD-dependent bacterial toxins (diphtheria toxin, Pseudomonas exotoxin A), which act by catalyzing the ADP-ribosylation of a specific acceptor protein. If the ADP-ribosylation of arginine is a model for the reaction catalyzed by choleragen in vivo, then arginine is presumably an analog of the amino acid which is ADP-ribosylated in the acceptor protein. It is postulated that choleragen exerts its effects on cells through the NAD-dependent ADP-ribosylation of an arginine or similar amino acid in either the cyclase itself or a regulatory protein of the cyclase system.  相似文献   
115.
116.
Cholera toxin exerts its effects on cells in large part through the ADP-ribosylation of guanine nucleotide-binding proteins. Toxin-catalyzed ADP-ribosylation is enhanced by approximately 20-kDa guanine nucleotide-binding proteins termed ADP-ribosylation factors (ARFs), which are allosteric activators of the toxin catalytic unit. Rabbit antiserum against a purified bovine brain ARF (sARF II) reacted on immunoblots with two approximately 20-kDa ARF-like proteins (sARF I and II) in tissue extracts from bovine, rat, frog, and chicken. Levels of ARF were higher in brain than in non-neural tissues. In rat brain, on the second postnatal day, amounts of sARF I and II were similar. By the 10th postnatal day and thereafter, sARF II predominated. Relative levels of ARF determined by immunoreactivity were in agreement with levels assessed in functional assays of cholera toxin-catalyzed ADP-ribosylation. Based on nucleotide and deduced amino acid sequences of human and bovine cDNAs, there appear to be at least six different ARF-like genes. Northern blots of rat brain poly(A)+ RNA were hybridized with cDNA and oligonucleotide probes specific for each of the human and bovine ARF genes. From the second to the 27th postnatal day, ARF 3 mRNA increased, whereas mRNAs for ARFs 2 and 4 decreased; and those for ARFs 1, 5, and 6 were apparently unchanged. Partial amino acid sequence of sARF II is consistent with it being either the ARF 1 or 3 gene product. The developmental changes in rat brain ARF parallel neuronal maturation and synapse formation.  相似文献   
117.
118.
In a companion report (Moss and Ward: J. Cell. Physiol 149:313-318, 1991) evidence was presented for multiple pathways for insulin internalization based on differences between the internalization of insulin and that of two other ligands, asialofetuin (Afet) and epidermal growth factor (EGF), in the presence of several perturbations of endocytosis. In the present study we have explored the characteristics of three internalization pathways and the contribution of each to overall insulin uptake. Freshly isolated hepatocytes were incubated with radiolabeled ligands in the presence of hyperosmolar sucrose, treatment that is thought to inhibit the coated pit pathway of endocytosis. Insulin internalization was decreased approximately 39%, but much greater decreases were observed with Afet (86%) and EGF (62%). Competition between uptake of radiolabeled and unlabeled insulin was observed in hyperosmolar-treated cells, suggestive of endocytosis by a receptor-mediated noncoated-pit pathway. Uptake of radiolabeled insulin that persisted in the presence of hyperosmolarity and high concentrations of unlabeled insulin suggested a third uptake pathway: fluid-phase endocytosis. A rate of fluid-phase endocytosis of 7.2 microL/hr/10(6) cells was determined from the uptake of the fluid-phase marker lucifer yellow. At high insulin concentrations (greater than or equal to 250 ng/ml), fluid-phase endocytosis appears to be the predominant pathway for insulin uptake, but at lower insulin concentrations (physiological) the coated pit and noncoated pit pathways are the primary routes for insulin internalization.  相似文献   
119.
We have approached the challenge of generating a primary T cell response to Epstein-Barr virus (EBV) in vitro by stimulating naive T cells with the autologous EBV-transformed lymphoblastoid cell line (LCL), a rich source of EBV-associated cytotoxic T lymphocyte (CTL) epitopes. Responsive T cells from three EBV-seronegative donors were cloned in agarose, phenotyped for T cell markers by flow cytometry, and their cytotoxic properties analyzed in the 51Cr release assay. Most clones (greater than 95%) expressed the CD4 phenotype and 59% of these clones showed cytotoxic properties. The dominant CTL response was specific for FCS-associated epitopes presented by FCS-grown autologous LCL target cells and was restricted by class II HLA antigens. Other clonal components included: (i) an EBV-specific response by HLA-restricted CD4 CTL clones that did not discriminate between A- and B-type EBV transformants; (ii) an EBV-specific response by an HLA-restricted CD4 CTL clone that discriminated between A- and B-type transformants, and (iii) a nonspecific cytotoxic response by CD3+,4+,8-, CD3+,4-,8-, and CD3-,4-,8- clones that were broadly allotypic or restricted to the lysis of K562 target cells. The EBV-specific CTL clones did not lyse the autologous EBV-negative B or T cell blasts and their specificity patterns of lysis were supported by the cold target competition data. These studies highlight the role of CD4 CTL in the establishment in vitro of a primary immune response to a human virus.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号