首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   6篇
  65篇
  2022年   2篇
  2021年   5篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   4篇
  2005年   4篇
  2003年   3篇
  2000年   3篇
  1999年   2篇
  1998年   5篇
  1996年   3篇
  1994年   2篇
  1993年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
21.
BackgroundTwo types of adipose tissues, white (WAT) and brown (BAT) are found in mammals. Increasingly novel strategies are being proposed for the treatment of obesity and its associated complications by altering amount and/or activity of BAT using mouse models.ConclusionOur study provides evidence for inter species (mouse vs human) differences in differential gene expression between sWAT and BAT. Critical understanding of this data may help in development of novel ways to engineer one form of adipose tissue to another using murine model with focus on human.  相似文献   
22.
In the inner ear of birds, as in mammals, reptiles and amphibians, acetylcholine released from efferent neurons inhibits hair cells via activation of an apamin-sensitive, calcium-dependent potassium current. The particular potassium channel involved in avian hair cell inhibition is unknown. In this study, we cloned a small-conductance, calcium-sensitive potassium channel (gSK2) from a chicken cochlear library. Using RT-PCR, we demonstrated the presence of gSK2 mRNA in cochlear hair cells. Electrophysiological studies on transfected HEK293 cells showed that gSK2 channels have a conductance of approximately 16 pS and a half-maximal calcium activation concentration of 0.74±0.17 M. The expressed channels were blocked by apamin (IC50=73.3±5.0 pM) and d-tubocurarine (IC50=7.6±1.0 M), but were insensitive to charybdotoxin. These characteristics are consistent with those reported for acetylcholine-induced potassium currents of isolated chicken hair cells, suggesting that gSK2 is involved in efferent inhibition of chicken inner ear. These findings imply that the molecular mechanisms of inhibition are conserved in hair cells of all vertebrates.  相似文献   
23.
Because the calmodulin in postsynaptic densities (PSDs) activates a cyclic nucleotide phosphodiesterase, we decided to explore the possibility that the PSD also contains a calmodulin-activatable protein kinase activity. As seen by autoradiographic analysis of coomassie blue-stained SDS polyacrylamide gels, many proteins in a native PSD preparation were phosphorylated in the presence of [γ-(32)P]ATP and Mg(2+) alone. Addition of Ca(2+) alone to the native PSD preparation had little or no effect on phosphorylation. However, upon addition of exogenous calmodulin there was a general increase in background phosphorylation with a statistically significant increase in the phosphorylation of two protein regions: 51,000 and 62,000 M(r). Similar results were also obtained in sonicated or freeze thawed native PSD preparations by addition of Ca(2+) alone without exogenous calmodulin, indicating that the calmodulin in the PSD can activate the kinase present under certain conditions. The calmodulin dependency of the reaction was further strengthened by the observed inhibition of the calmodulin-activatable phosphorylation, but not of the Mg(2+)-dependent activity, by the Ca(2+) chelator, EGTA, which also removes the calmodulin from the structure (26), and by the binding to calmodulin of the antipsychotic drug chlorpromazine in the presence of Ca(2+). In addition, when a calmodulin-deficient PSD preparation was prepared (26), sonicated, and incubated with [γ-(32)P]ATP, Mg(2+) and Ca(2+), one could not induce a Ca(2+)-stimulation of protein kinase activity unless exogenous calmodulin was added back to the system, indicating a reconstitution of calmodulin into the PSD. We have also attempted to identify the two major phosphorylated proteins. Based on SDS polyacrylamide gel electrophoresis, it appears that the major 51,000 M(r) PSD protein is the one that is phosphorylated and not the 51,000 M(r) component of brain intermediate filaments, which is a known PSD contaminant. In addition, papain digestion of the 51,000 M(r) protein revealed multiple phosphorylation sites different from those phosphorylated by the Mg(2+)-dependent kinase(s). Finally, although the calmodulin-activatable protein kinase may phosphorylate proteins I(a) and I(b), the cyclic AMP-dependent protein kinase, which definitely does phosphorylate protein I(a) and I(b) and is present in the PSD, does not phosphorylate the 51,000 and 62,000 M(r) proteins, because specific inhibition of this kinase has no effect on the levels of the phosphorylation of these latter two proteins.  相似文献   
24.
The structure of gap junctions in the rabbit ciliary epithelium, corneal endothelium, and mouse stomach and liver was studied with the freeze-fracturing technique after rapid freezing to near 4 degrees K from the living state. In the ciliary epithelium, the connexons were randomly distributed, separated by smooth membrane matrix. In the corneal endothelium, both random and crystalline arrangements of the connexons were observed. In the stomach and liver, the connexons were packed but not crystalline. Experimental anoxia or lowered pH caused crystallization of the connexons within 20-30 min. In the ciliary epithelium, the effects of prolonged anoxia or low pH could not be reversed . In addition, invaginated or annular gap junctions increased in number, but their connexons were usually distributed at random. Rapid freezing thus demonstrates that gap junctions of different tissues are highly pleiomorphic in the living state, and this may explain their variations in structure after chemical fixation. The slow time-course and irreversibility of the morphological changes induced by prolonged anoxia or low pH suggest that connexon crystallization may be a long-term consequence rather than the morphological correlate of the switch to high resistance.  相似文献   
25.
Selective targeting of transfected mesenchymal stem cells (MSCs) carrying specific antioncogenes to the tumor was suggested as a treatment option. Bone morphogenetic protein-2 (BMP2) was shown to inhibit the proliferation and aggressiveness of osteosarcoma (OS) cells. Here, we aimed to assess the homing efficiency of intraperitoneally administered hMSCs transfected with BMP2 to the tumoral site and their effects on OS using an orthotopic xenograft murine model. Orthotopic xenograft murine model of OS in six-week-old female NOD/SCID mice using 143B cells was established. hMSCs transfected with BMP2 (BMP2+hMSC) were used. In vivo experiments performed on four groups of mice that received no treatment, or intraperitoneally administered BMP2, hMSCs, and BMP2+hMSCs. Histopathological and immunohistochemical studies were used to evaluate the pathological identification and to assess the dimensions and necrotic foci of the tumor, the features of lung metastases, and immunostaining against p27, Ki-67, and caspase-3 antibodies. The osteogenic differentiation markers BMP2, BMP4, COL1A1, OPN, OCN and PF4 evaluated using RT-PCR. The tumor dimensions in the hMSCs group were significantly higher than those of the remaining groups (p < 0.01). The number of metastatic foci in the BMP2+hMSCs group was significantly lower than those of the other groups (p < 0.01). The current results showed that the intraperitoneal route could be efficiently used for targeting hMSCs to the tumoral tissues for effective BMP2 delivery. In this study, the effects of BMP2 transfected hMSCs on human OS and metastasis were promising for achieving osteogenic differentiation and reduced metastatic process.  相似文献   
26.
Opportunistic fungal infections increase morbidity and mortality in COVID-19 patients monitored in intensive care units (ICU). As patients’ hospitalization days in the ICU and intubation period increase, opportunistic infections also increase, which prolongs hospital stay days and elevates costs. The study aimed to describe the profile of fungal infections and identify the risk factors associated with mortality in COVID-19 intensive care patients. The records of 627 patients hospitalized in ICU with the diagnosis of COVID-19 were investigated from electronic health records and hospitalization files. The demographic characteristics (age, gender), the number of ICU hospitalization days and mortality rates, APACHE II scores, accompanying diseases, antibiotic-steroid treatments taken during hospitalization, and microbiological results (blood, urine, tracheal aspirate samples) of the patients were recorded. Opportunistic fungal infection was detected in 32 patients (5.10%) of 627 patients monitored in ICU with a COVID-19 diagnosis. The average APACHE II score of the patients was 28 ± 6. While 25 of the patients (78.12%) died, seven (21.87%) were discharged from the ICU. Candida parapsilosis (43.7%) was the opportunistic fungal agent isolated from most blood samples taken from COVID-19 positive patients. The mortality rate of COVID-19 positive patients with candidemia was 80%. While two out of the three patients (66.6%) for whom fungi were grown from their tracheal aspirate died, one patient (33.3%) was transferred to the ward. Opportunistic fungal infections increase the mortality rate of COVID-19-positive patients. In addition to the risk factors that we cannot change, invasive procedures should be avoided, constant blood sugar regulation should be applied, and unnecessary antibiotics use should be avoided.  相似文献   
27.

Objective

Targeting the energy storing white adipose tissue (WAT) by pharmacological and dietary means in order to promote its conversion to energy expending “brite” cell type holds promise as an anti-obesity approach. Present study was designed to investigate/revisit the effect of capsaicin on adipogenic differentiation with special reference to induction of “brite” phenotype during differentiation of 3T3-L1 preadipocytes.

Methods

Multiple techniques such as Ca2+ influx assay, Oil Red-O staining, nutrigenomic analysis in preadipocytes and matured adipocytes have been employed to understand the effect of capsaicin at different doses. In addition to in-vitro experiments, in-vivo studies were carried out in high-fat diet (HFD) fed rats treated with resiniferatoxin (RTX) (a TRPV1 agonist) and in mice administered capsaicin.

Results

TRPV1 channels are expressed in preadipocytes but not in adipocytes. In preadipocytes, both capsaicin and RTX stimulate Ca2+ influx in dose-dependent manner. This stimulation may be prevented by capsazepine, a TRPV1 antagonist. At lower doses, capsaicin inhibits lipid accumulation and stimulates TRPV1 gene expression, while at higher doses it enhances accumulation of lipids and suppresses expression of its receptor. In doses of 0.1–100 µM, capsaicin promotes expression of major pro-adipogenic factor PPARγ and some of its downstream targets. In concentrations of 1 µM, capsaicin up-regulates anti-adipogenic genes. Low-dose capsaicin treatment of 3T3-L1 preadipocytes differentiating into adipocytes results in increased expression of brown fat cell marker genes. In white adipose of mice, capsaicin administration leads to increase in browning-specific genes. Global TRPV1 ablation (i.p. by RTX administration) leads to increase in locomotor activity with no change in body weight.

Conclusion

Our findings suggest the dual modulatory role of capsaicin in adipogenesis. Capsaicin inhibits adipogenesis in 3T3-L1 via TRPV1 activation and induces brown-like phenotype whereas higher doses.  相似文献   
28.

Background  

Inbreeding can slow population growth and elevate extinction risk. A small number of unrelated immigrants to an inbred population can substantially reduce inbreeding and improve fitness, but little attention has been paid to the sex-specific effects of immigrants on such "genetic rescue". We conducted two subsequent experiments to investigate demographic consequences of inbreeding and genetic rescue in guppies.  相似文献   
29.
The phylogenetic potential of entire 26S rDNA sequences in plants   总被引:5,自引:1,他引:5  
18S ribosomal RNA genes are the most widely used nuclear sequences for phylogeny reconstruction at higher taxonomic levels in plants. However, due to a conservative rate of evolution, 18S rDNA alone sometimes provides too few phylogenetically informative characters to resolve relationships adequately. Previous studies using partial sequences have suggested the potential of 26S or large-subunit (LSU) rDNA for phylogeny retrieval at taxonomic levels comparable to those investigated with 18S rDNA. Here we explore the patterns of molecular evolution of entire 26S rDNA sequences and their impact on phylogeny retrieval. We present a protocol for PCR amplification and sequencing of entire (approximately 3.4 kb) 26S rDNA sequences as single amplicons, as well as primers that can be used for amplification and sequencing. These primers proved useful in angiosperms and Gnetales and likely have broader applicability. With these protocols and primers, entire 26S rDNA sequences were generated for a diverse array of 15 seed plants, including basal eudicots, monocots, and higher eudicots, plus two representatives of Gnetales. Comparisons of sequence dissimilarity indicate that expansion segments (or divergence domains) evolve 6.4 to 10.2 times as fast as conserved core regions of 26S rDNA sequences in plants. Additional comparisons indicate that 26S rDNA evolves 1.6 to 2.2 times as fast as and provides 3.3 times as many phylogenetically informative characters as 18S rDNA; compared to the chloroplast gene rbcL, 26S rDNA evolves at 0.44 to 1.0 times its rate and provides 2.0 times as many phylogenetically informative characters. Expansion segment sequences analyzed here evolve 1.2 to 3.0 times faster than rbcL, providing 1.5 times the number of informative characters. Plant expansion segments have a pattern of evolution distinct from that found in animals, exhibiting less cryptic sequence simplicity, a lower frequency of insertion and deletion, and greater phylogenetic potential.   相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号