首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   7篇
  2021年   3篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2015年   4篇
  2014年   3篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   8篇
  2006年   3篇
  2005年   4篇
  2004年   6篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   10篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1989年   4篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1977年   1篇
排序方式: 共有95条查询结果,搜索用时 15 毫秒
31.
32.
Evidence of associations between free-living amoebas and human disease has been increasing in recent years. Knowledge about phylogenetic relationships that may be important for the understanding of pathogenicity in the genera involved is very limited at present. Consequently, we have begun to study these relationships and report here on the phylogeny of Hartmannella vermiformis, a free-living amoeba that can harbor the etiologic agent of Legionnaires' disease. Our analysis is based on studies of small-subunit ribosomal RNA genes (srDNA). Nucleotide sequences were determined for nuclear srDNA from three strains of H. vermiformis isolated from the United Kingdom, Germany, and the United States. These sequences then were compared with a sequence previously obtained for a North American isolate by J. H. Gunderson and M. L. Sogin. The four genes are 1,840 bp long, with an average GC content of 49.6%. Sequence differences among the strains range are 0.38%-0.76%. Variation occurs at 19 positions and includes 2 single-base indels plus 14 monotypic and 3 ditypic single-base substitutions. Variation is limited to eight helix/loop structures according to a current model for srRNA secondary structure. Parsimony, distance, and bootstrap analyses used to examine phylogenetic relationships between the srDNA sequences of H. vermiformis and other eukaryotes indicated that Hartmannella sequences were most closely related to those of Acanthamoeba and the alga Cryptomonas. All ditypic sites were consistent with a separation between European and North American strains of Hartmannella, but results of other tests of this relationship were statistically inconclusive.   相似文献   
33.
The hypothesis that glial cells synthesize proteins which are transferred to adjacent neurons was evaluated in the giant fiber of the squid (Loligo pealei). When giant fibers are separated from their neuron cell bodies and incubated in the presence of radioactive amino acids, labeled proteins appear in the glial cells and axoplasm. Labeled axonal proteins were detected by three methods: extrusion of the axoplasm from the giant fiber, autoradiography, and perfusion of the giant fiber. This protein synthesis is completely inhibited by puromycin but is not affected by chloramphenicol. The following evidence indicates that the labeled axonal proteins are not synthesized within the axon itself. (a) The axon does not contain a significant amount of ribosomes or ribosomal RNA. (b) Isolated axoplasm did not incorporate [(3)H]leucine into proteins. (c) Injection of Rnase into the giant axon did not reduce the appearance of newly synthesized proteins in the axoplasm of the giant fiber. These findings, coupled with other evidence, have led us to conclude that the adaxonal glial cells synthesize a class of proteins which are transferred to the giant axon. Analysis of the kinetics of this phenomenon indicates that some proteins are transferred to the axon within minutes of their synthesis in the glial cells. One or more of the steps in the transfer process appear to involve Ca++, since replacement of extracellular Ca++ by either Mg++ or Co++ significantly reduces the appearance of labeled proteins in the axon. A substantial fraction of newly synthesized glial proteins, possibly as much as 40 percent, are transferred to the giant axon. These proteins are heterogeneous and range in size from 12,000 to greater than 200,000 daltons. Comparisons of the amount of amino acid incorporation in glia cells and neuron cell bodies raise the possibility that the adaxonal glial cells may provide an important source of axonal proteins which is supplemental to that provided by axonal transport from the cell body. These findings are discussed with reference to a possible trophic effect of glia on neurons and metabolic cooperation between adaxonal glia and the axon.  相似文献   
34.
It has been suggested that statins can both stimulate and suppress the immune system, and thereby, may influence autoimmune diseases. Therefore, we studied effects of statins on innate and adaptive immunity, and self-tolerance by measuring serological levels of C-reactive protein (CRP), neopterin, immunoglobulin E (IgE) antibodies and the presence of autoantibodies (antinuclear antibodies (ANA) and IgM rheumatoid factor (RF)) in the general population. We conducted a nested case-control study within the population-based Doetinchem cohort. Data from health questionnaires, serological measurements and information on medication from linkage to pharmacy-dispensing records were available. We selected 332 statin users (cases) and 331 non-users (controls), matched by age, sex, date of serum collection, history of cardiovascular diseases, diabetes mellitus type II and stroke. Multivariate regression analyses were performed to estimate effect of statins on the immune system. The median level of CRP in statin users (1.28 mg/L, interquartile range (IQR): 0.59-2.79) was lower than in non-users (1.62 mg/L, IQR: 0.79-3.35), which after adjustment was estimated to be a 28% lower level. We observed an inverse association between duration of statin use and CRP levels. Elevated levels of IgE (>100 IU/mL) were more prevalent in statin users compared to non-users. A trend towards increased levels of IgE antibodies in statin users was observed, whereas no associations were found between statin use and levels of neopterin or the presence of autoantibodies. In this general population sub-sample, we observed an anti-inflammatory effect of statin use and a trend towards an increase of IgE levels, an surrogate marker for Th (helper) 2 responses without a decrease in neopterin levels, a surrogate marker for Th1 response and/or self-tolerance. We postulate that the observed decreased inflammatory response during statin therapy may be important but is insufficient to induce loss of self-tolerance.  相似文献   
35.
Microarray analysis is used for simultaneous measurement of expression of thousands of genes in a given sample and as such extends and deepens our understanding of biological processes. Application of the technique in toxicology is referred to as toxicogenomics. The examples of assessment of immunotoxicity by gene expression profiling presented and discussed here, show that microarray analysis is able to detect known and novel effects of a wide range of immunomodulating agents. Besides the elucidation of mechanisms of action, toxicogenomics is also applied to predict consequences of exposing biological systems to toxic agents. Successful attempts to classify compounds using signature gene expression profiles have been reported. These did, however, not specifically focus on immunotoxicity. Databases containing expression profiles can facilitate the applications of toxicogenomics. Platforms and methodologies for gene expression profiling may vary, however, hampering data compiling across different laboratories. Therefore, attention is paid to standardization of the generation, reporting, and management of microarray data. Obtained gene expression profiles should be anchored to pathological and functional endpoints for correct interpretation of results. These issues are also important when using toxicogenomics in risk assessment. The application of toxicogenomics in evaluation of immunotoxicity is thus not yet without challenges. It already contributes to the understanding of immunotoxic processes and the development of in vitro screening assays, though, and is therefore expected to be of value for mechanistic insight into immunotoxicity and hazard identification of existing and novel compounds.  相似文献   
36.
37.
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号