首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2257篇
  免费   321篇
  2022年   24篇
  2021年   30篇
  2019年   24篇
  2017年   24篇
  2016年   40篇
  2015年   56篇
  2014年   71篇
  2013年   82篇
  2012年   123篇
  2011年   108篇
  2010年   62篇
  2009年   66篇
  2008年   100篇
  2007年   93篇
  2006年   76篇
  2005年   81篇
  2004年   92篇
  2003年   96篇
  2002年   70篇
  2001年   69篇
  2000年   56篇
  1999年   42篇
  1997年   26篇
  1996年   30篇
  1995年   22篇
  1994年   21篇
  1993年   30篇
  1992年   61篇
  1991年   57篇
  1990年   52篇
  1989年   49篇
  1988年   64篇
  1987年   57篇
  1986年   45篇
  1985年   39篇
  1984年   25篇
  1983年   23篇
  1980年   22篇
  1979年   19篇
  1977年   21篇
  1976年   20篇
  1975年   19篇
  1974年   24篇
  1973年   24篇
  1972年   21篇
  1971年   32篇
  1969年   17篇
  1968年   19篇
  1967年   18篇
  1966年   20篇
排序方式: 共有2578条查询结果,搜索用时 15 毫秒
191.
Interactions of the placental glycoprotein hormone human choriogonadotropin (hCG) with lutropin receptors (LHR) are required for maintenance of early pregnancy. Knowledge of how hCG interacts with LHR is useful for understanding the mechanism of receptor function, an issue of considerable debate. A large surface of hCG remains exposed after the hormone binds the LHR and can be readily detected with monoclonal antibodies. Here we show that the surface of hCG alpha-subunit loop 1 furthest from the beta-subunit interface can also be recognized by a monoclonal antibody when hCG is bound to the LHR. This extends the area of hCG known to be exposed in the hormone receptor complex, an observation that further restricts models of hCG-LHR interaction.  相似文献   
192.
The endoplasmic reticulum protein tapasin is considered to be a class I-dedicated chaperone because it facilitates peptide loading by proposed mechanisms such as peptide editing, endoplasmic reticulum retention of nonpeptide-bound molecules, and/or localizing class I near the peptide source. Nonetheless, the primary functions of tapasin remain controversial as do the relative dependencies of different class I molecules on tapasin for optimal peptide loading and surface expression. Tapasin dependencies have been addressed in previous studies by transfecting different class I alleles into tapasin-deficient LCL721.220 cells and then monitoring surface expression and Ag presentation to T cells. Indeed, by these criteria, class I alleles have disparate tapasin-dependencies. In this study, we report a novel and more direct method of comparing tapasin dependency by monitoring the ratio of folded vs open forms of the different mouse class I heavy chains, L(d), K(d), and K(b). Furthermore, we determine the amount of de novo heavy chain synthesis required to attain comparable expression in the presence vs absence of tapasin. Our findings show that tapasin dramatically improves peptide loading of all three of these mouse molecules.  相似文献   
193.
Two major T cell determinants are recognized by I-Ar-specific T cells in CII, the immunodominant CII610-618 (GPAGT AGA R) within CB10 and the subdominant CII445-453 (GPAGP AGE R) within CB8. Although the determinants differ by only two residues, CB8 is capable of inducing collagen-induced arthritis (CIA), while CB10 is not. We, therefore, investigated the structural differences between the two determinants that are critical to inducing arthritis. When the CB10 determinant was mutated to that of CB8 using recombinant techniques, the resulting mutant rCB10T614P,A617E product became arthritogenic. Conversely, when the CB8 determinant was mutated to that of CB10, the resulting mutant CB8P449T,E452A was no longer arthritogenic. Comparison of the epitope specificity of the autoantibodies induced by wild-type CB10 and mutant rCB10T614P, A617E revealed no qualitative differences. T cells from mice immunized with either CB10 or mutant rCB10 produced predominantly Th1 cytokines when cultured with the immunizing Ag. In contrast, when cultured with mouse CII, T cells from mice immunized with the nonarthritogenic CB10 produced predominantly Th2 (IL-4 and IL-10) cytokines whereas the arthritogenic mutant rCB10 induced predominantly Th1 (IFN-gamma) cytokines. We conclude that the T cell cytokine response most critical for the induction of CIA is that induced against the corresponding homologous murine T cell determinant and, further, that the structural differences between the T cell determinants in CB8 and -10 are important in breaking self tolerance and inducing autoimmune response.  相似文献   
194.
195.
196.
Investigators currently lack the data necessary to define the state of skeletal muscle properties within cadaveric specimens. The purpose of this study is to define the temporal changes in the postmortem properties of skeletal muscle as a function of mechanical loading and freezer storage. The tibialis anterior of the New Zealand white rabbit was chosen for study. Modulus and no-load strain were found to vary significantly from live after eight hours postmortem. Following the changes that occur during rigor mortis, a stable region of postmortem, post-rigor properties occurred between 36 to 72 hours postmortem. A freeze-thaw process was not found to have a significant effect on the post-rigor response. The first loading cycle response of post-rigor muscle was unrepeatable but stiffer than live passive muscle. After preconditioning, the post-rigor muscle response was repeatable. The preconditioned post-rigor response was less stiff than the live passive response due to a significant increase in no-load strain. Failure properties of postmortem muscle were found to be significantly different from live passive muscle with a significant decrease in failure stress (61 percent) and energy (81 percent), while failure strain was unchanged. These results suggest that the post-rigor response of cadaveric muscle is unaffected by freezing but sensitive to even a few cycles of mechanical loading.  相似文献   
197.
Recessive mutations in the maize dsc1 locus prevent normal kernel development. Solidification of the endosperm in homozygous dsc1– mutant kernels was undetectable 12 days after pollination, at which time the tissue was apparently completely solidified in wild-type kernels. At later times endosperm did solidify in homozygous dsc1– mutant kernels, but there was a marked reduction in the volume of the tissue. Embryo growth in homozygous dsc1– kernels was delayed compared to wild-type kernels, but proceeded to an apparently normal stage 1 in which the scutellum, coleoptile, and shoot apex were clearly defined. Embryo growth then ceased and the embryonic tissues degraded. Late in kernel development no tissue distinctions were obvious in dsc1– mutant embryos. Immature mutant embryos germinated when transplanted from kernels to tissue culture medium prior to embryonic degeneration, but only coleoptile proliferation was observed. The dsc1 gene was isolated by transposon tagging. Analysis of the two different dsc1– mutations confirmed that transposon insertion into the cloned genomic locus was responsible for the observed phenotype. Dsc1 mRNA was detected specifically in kernels 5–7 days after pollination. These data indicate Dsc1 function is required for progression of embryo development beyond a specific stage, and also is required for endosperm development.  相似文献   
198.
Spinel‐structured LiMn2O4 (LMO) is a desirable cathode material for Li‐ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single‐layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene‐coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X‐ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmission electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single‐layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn3+ at the LMO electrode surface, promoting an oxidation state change to Mn4+, which suppresses dissolution.  相似文献   
199.
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号