首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1462篇
  免费   153篇
  1615篇
  2023年   11篇
  2022年   22篇
  2021年   33篇
  2020年   24篇
  2019年   28篇
  2018年   39篇
  2017年   34篇
  2016年   51篇
  2015年   68篇
  2014年   79篇
  2013年   101篇
  2012年   105篇
  2011年   96篇
  2010年   50篇
  2009年   67篇
  2008年   57篇
  2007年   60篇
  2006年   56篇
  2005年   64篇
  2004年   52篇
  2003年   52篇
  2002年   51篇
  2001年   29篇
  2000年   32篇
  1999年   37篇
  1998年   17篇
  1997年   16篇
  1996年   15篇
  1995年   16篇
  1994年   11篇
  1993年   10篇
  1992年   14篇
  1991年   18篇
  1990年   17篇
  1989年   22篇
  1988年   18篇
  1987年   14篇
  1986年   5篇
  1985年   11篇
  1984年   7篇
  1983年   7篇
  1982年   9篇
  1980年   11篇
  1979年   7篇
  1978年   6篇
  1977年   7篇
  1975年   7篇
  1973年   13篇
  1970年   6篇
  1965年   3篇
排序方式: 共有1615条查询结果,搜索用时 15 毫秒
81.
Green sulfur bacteria are obligate, anaerobic photolithoautotrophs that synthesize unique bacteriochlorophylls (BChls) and a unique light-harvesting antenna structure, the chlorosome. One organism, Chlorobium tepidum, has emerged as a model for this group of bacteria primarily due to its relative ease of cultivation and natural transformability. This review focuses on insights into the physiology and biochemistry of the green sulfur bacteria that have been derived from the recently completed analysis of the 2.15-Mb genome of Chl. tepidum. About 40 mutants of Chl. tepidum have been generated within the last 3 years, most of which have been made based on analyses of the genome. This has allowed a nearly complete elucidation of the biosynthetic pathways for the carotenoids and BChls in Chl. tepidum, which include several novel enzymes specific for BChl c biosynthesis. Facilitating these analyses, both BChl c and carotenoid biosynthesis can be completely eliminated in Chl. tepidum. Based particularly on analyses of mutants lacking chlorosome proteins and BChl c, progress has also been made in understanding the structure and biogenesis of chlorosomes. In silico analyses of the presence and absence of genes encoding components involved in electron transfer reactions and carbon assimilation have additionally revealed some of the potential physiological capabilities, limitations, and peculiarities of Chl. tepidum. Surprisingly, some structural components and biosynthetic pathways associated with photosynthesis and energy metabolism in Chl. tepidum are more similar to those in cyanobacteria and plants than to those in other groups of photosynthetic bacteria.  相似文献   
82.
THIOMABs are recombinant antibodies with reactive cysteine residues used for forming THIOMAB–drug conjugates (TDCs). We recently reported a new impurity associated with THIOMABs: one of the engineered cysteines forms a disulfide bond with an extra light chain (LC) to generate a triple light chain antibody (3LC). In our previous investigations, increased LC expression increased 3LC levels, whereas increased glutathione (GSH) production decreased 3LC levels. In this work, on three stably transfected CHO cell lines, we investigated the effects of temperature, pH, dissolved oxygen (DO), and hydrolysate on 3LC formation during THIOMAB fed‐batch cell culture production. Although pH between 6.8 and 7.0 had no significant impact on 3LC formation, temperature at 35°C instead of 33 or 31°C generated the lowest 3LC values for two cell lines. The decreased 3LC level correlated with increased GSH production. We implemented a 35°C temperature process for large‐scale (2,000 L) production of a THIOMAB. This process reduced 3LC levels by ~50% compared with a 33°C temperature process. By contrast, DO and hydrolysate had modest effect on 3LC levels for the model cell line studied. Overall, we did not find significant changes in LC expression under the conditions tested, whereas changes in GSH production were more evident. By investigating the impact of bioreactor process and medium conditions on 3LC levels, we identified strategies that reduced 3LC levels. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
83.
The environmental pathogen Legionella pneumophila encodes three proteins containing F‐box domains and additional protein–protein interaction domains, reminiscent of eukaryotic SCF ubiquitin–protein ligases. Here we show that the F‐box proteins of L. pneumophila strain Paris are Dot/Icm effectors involved in the accumulation of ubiquitinated proteins associated with the Legionella‐containing vacuole. Single, double and triple mutants of the F‐box protein encoding genes were impaired in infection of Acanthamoeba castellanii, THP‐1 macrophages and human lung epithelial cells. Lpp2082/AnkB was essential for infection of the lungs of A/J mice in vivo , and bound Skp1, the interaction partner of the SCF complex in mammalian cells, similar to AnkB from strain AA100/130b. Using a yeast two‐hybrid screen and co‐immunoprecipitation analysis we identified ParvB a protein present in focal adhesions and in lamellipodia, as a target. Immunofluorescence analysis confirmed that ectopically expressed Lpp2082/AnkB colocalized with ParvB at the periphery of lamellipodia. Unexpectedly, ubiquitination tests revealed that Lpp2082/AnkB diminishes endogenous ubiquitination of ParvB. Based on these results we propose that L. pneumophila modulates ubiquitination of ParvB by competing with eukaryotic E3 ligases for the specific protein–protein interaction site of ParvB, thereby revealing a new mechanism by which L. pneumophila may employ translocated effector proteins to promote bacterial survival.  相似文献   
84.
Peptide hormones are generally synthesized as inactive higher mol. wt precursors. Processing of the prohormone into biologically active peptides by specific proteolytic cleavages occurs most often at pairs of basic amino acids but also at single arginine residues. To study the role of protein secondary structure in this process, we used site-directed mutagenesis to modify the predicted secondary structure around the cleavage sites of human prosomatostatin and monitored the processing of the precursor after introduction of the mutated cDNAs in Neuro2A cells. Amino acid substitutions were introduced that affected the possibility of forming beta-turn structures in the immediate vicinity of the somatostatin-28 (S-28) and somatostatin-14 (S-14) cleavage sites. Infection of Neuro2A cells with a retrovirus carrying a human somatostatin cDNA resulted in the expression of prosomatostatin and its processing into S-28 and S-14, indicating that these cells have the necessary enzymes to process prohormone at both single and paired amino acid residues. Disruption of the different beta-turns had various effects on prosomatostatin processing: substitution of Ala for Pro-5 drastically decreased prosomatostatin processing and replacement of Pro-9 by Ala led to the accumulation of the intermediate maturation product [Arg-2Lys-1]-S-14. In contrast, substitution of Ala for Asn-12, Gly+2 and Cys+3 respectively had only very little effect on the proteolytic processing of prosomatostatin. Our results show that amino acids other than the basic amino acid residues are required to define the cleavage sites for prohormone proteolytic processing and suggest that higher orders of protein structure are involved in substrate recognition by the endoproteases.  相似文献   
85.
Using confocal microscopy, we have examined the increases in [Ca(2+)](i) evoked by sodium channel toxins in cells labelled with the fluorescent dye INDO-1. We describe a new image analysis method that improves the detection of region-specific, toxin-induced patterns of change of intracellular calcium. This method is based on correction of global image motion followed by calculation of the strength of correlation between calcium changes in "seed" or reference pixels chosen to represent different regions of cells and those in other regions of the image. When the selected "seed" pixel was chosen to be in either varicosities or neurites, correlations were detected in the same regions of other cells as well as in the soma, indicating specific but spatially distinct patterns of behaviour. Control images (without changes in [Ca(2+)](i)) did not reveal significant interpixel correlations. The ability to recognize correlated patterns of calcium change in different regions of cells was greatly improved by correction for global motion.  相似文献   
86.
In HIV infected persons, Cryptosporidium parvum causes chronic diarrhoea, which can be life-threatening in persons with AIDS and with a low CD4+ T cell count. However, a specific and effective therapy for this opportunistic infection does not yet exist. Since the use of a combination therapy with a highly active antiretroviral therapy (HAART), the prevalence of C. parvum infection in persons with AIDS has been strongly reduced. This favorable outcome was usually attributed to the recovery of the host immunity, however improvements from this opportunistic infection have been demonstrated even in the absence of immunological recovery. The aim of the present study was to determine whether HIV protease inhibitors (PIs) exert an anti-C. parvum activity. We selected the indinavir (an aspartyl protease inhibitor included in HAART) for our experiments, since a resolution of cryptosporidial enteritis in a person with AIDS after treatment with this drug has been reported. Human ileocecal adenocarcinoma tumor cells (HCT-8) were used as in vitro model. To determine whether or not indinavir had an effect on the parasite attachment to, or invasion of the HCT-8 cells, indinavir was added to the cultures at the same time as the infective dose (3 oocysts/cell) at one of the following concentrations: 0.1, 0.5, 5, 10, 20, and 50 microM (maximum DMSO content 0.5% vol/vol). To determine whether or not indinavir had an effect on established C. parvum infection, HCT-8 cells were infected with excysted oocysts at a ratio of 3 oocysts/cell at day 0, and then indinavir at a concentration of 50 microM was added to the cultures every 24 h for 4 days. The infection level was evaluated at 2, 3, 4 and 5 days p.i. using a flowcytometric assay. Three-day-old Balb/c mice were used as animal model, animals were infected per os with 50 microl of PBS containing 10(5) oocysts. The infected mice were divided into two groups (Group A and Group B), both of which received per os indinavir diluted in PBS with 0.1% DMSO at a concentration of 10 microM (24 mg/kg). For Group A, which consisted of 15 mice (3 litters), indinavir was administered at the same time that experimental infection was performed and then every day until the mice were sacrificed (i.e., 5 days p.i.), to determine the effect of indinavir on the attachment/invasion of the enterocytes. For Group B, which also consisted of 15 mice (3 litters), indinavir was administered after the infection was established (i.e., 72 h p.i.) and every day until being sacrificed, to determine the effect of indinavir on established infection. The mice of Group B were sacrificed 7, 10, 11 and 13 days p.i., corresponding to 4, 7, 8, and 10 days of treatment with indinavir. In vitro, the treatment of the excystated oocysts with different concentrations of indinavir reduced the percentage of HCT-8 infected cells in a dose-dependent manner. For established infection, the treatment with 50 microM of indinavir decreased the percentage of infected cells in a time-dependent manner. Treatment for 48 h resulted in a 40.1% reduction in infected cells (from 90% to 53%). After 72 h of treatment, the percentage of infected cells did not substantially differ from that observed after 48 h. Treatment for 96 h resulted in a 57.8% reduction (from 90 to 38%). In vivo, mice treated with indinavir at the same time they were infected with the oocysts showed a 93% reduction in the number of oocysts present in the entire intestinal contents and a 91% reduction in the number of intracellular parasites in the ileum. For established infection, indinavir treatment reduced the number of oocysts in the entire intestinal content by about 50% and the number of intracellular parasites in the ileum by about 70%. These data demonstrate that PIs directly exert an inhibitory effect on C. parvum and the extent of this effect depended on the specific dose and the duration of treatment. Although there are no reports of aspartyl proteases in C. parvum, the inhibitory effect of PIs on C. parvum growth in vitro suggests that aspartyl proteases could have some important functions for this parasite. In fact, proteolytic activities have been demonstrated during peak periods of excystation in C. parvum oocysts and cysteine and serine protease classes have been functionally associated with this process. Moreover, we identified several different C. parvum sequences that showed homology with a protein family related to aspartyl proteases. In prospect, PIs could be valuable for the chemotherapy of cryptosporidiosis.  相似文献   
87.
Multidrug resistance (MDR) is one of the major problems affecting the treatment of cancer. In vivo visualization and quantification of MDR proteins would be of great value to better select the therapeutic strategy. Six flavone-based compounds were synthesized and evaluated for their cytotoxic activity and MDR-reversing capacity using hMRP1 or hMDR1 overexpressing cell lines for in vitro assays. All the flavone derivatives were highly selective for hMRP1-expressing cell lines. These derivatives each used at 4muM (a non-cytotoxic concentration) enhance significantly the sensitivity of hMRP1-mediated MDR cell line toward doxorubicin toxicity. Their MDR-reversing capacity suggests that, in particular, the 4'-fluoroalkyloxy and 4'-iodo apigenin derivatives are potential new radiopharmaceuticals to visualize in vivo MRP1-mediated MDR phenomenon by PET or SPECT.  相似文献   
88.
A series of novel 4-aryl-1,2,3,4-tetrahydroisoquinoline-based histamine H(3) ligands that also have serotonin reuptake transporter inhibitor activity is described. The synthesis, in vitro biological data, and select pharmacokinetic data for these novel compounds are discussed.  相似文献   
89.
Cisplatin, doxorubicin and fluorouracil (5-FU), drugs belonging to different chemical classes, have been extensively used for chemotherapy of various cancers. Despite extensive investigations into their hepatotoxicity, there is very limited information on their effects on the structure and ultra-structure of liver cells in vivo. Here, we demonstrate for the first time, the effects of these three anticancer drugs on rat liver toxicity using both light and electron microscopy. Light microscopic observations revealed that higher doses of cisplatin and doxorubicin caused massive hepatotoxicity compared to 5-FU treatment, including dissolution of hepatic cords, focal inflammation and necrotic tissues. Interestingly, low doses also exhibited abnormal changes, including periportal fibrosis, degeneration of hepatic cords and increased apoptosis. These changes were confirmed at ultrastructural level, including vesiculated rough endoplasmic reticulum and atrophied mitochondria with ill-differentiated cisternae, dense collection of macrophages and lymphocytes as well as fibrocytes with collagenous fibrils manifesting early sign of fibrosis, especially in response to cisplatin and doxorubicin -treatment. Our results provide in vivo evidence, at ultrastructural level, of direct hepatotoxicity caused by cisplatin, doxorubicin and 5-FU at both light and electron microscopi. These results can guide the design of appropriate treatment regimen to reduce the hepatotoxic effects of these anticancer drugs.  相似文献   
90.
The sustainability of global crop production is critically dependent on improving tolerance of crop plants to various types of environmental stress. Thus, identification of genes that confer stress tolerance in crops has become a top priority especially in view of expected changes in global climatic patterns. Drought stress is one of the abiotic stresses that can result in dramatic loss of crop productivity. In this work, we show that transgenic expression of a highly conserved cell death suppressor, Bax Inhibitor‐1 from Arabidopsis thaliana (AtBI‐1), can confer increased tolerance of sugarcane plants to long‐term (>20 days) water stress conditions. This robust trait is correlated with an increased tolerance of the transgenic sugarcane plants, especially in the roots, to induction of endoplasmic reticulum (ER) stress by the protein glycosylation inhibitor tunicamycin. Our findings suggest that suppression of ER stress in C4 grasses, which include important crops such as sorghum and maize, can be an effective means of conferring improved tolerance to long‐term water deficit. This result could potentially lead to improved resilience and yield of major crops in the world.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号