首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8028篇
  免费   878篇
  国内免费   2500篇
  11406篇
  2024年   53篇
  2023年   184篇
  2022年   374篇
  2021年   458篇
  2020年   351篇
  2019年   459篇
  2018年   381篇
  2017年   299篇
  2016年   399篇
  2015年   567篇
  2014年   706篇
  2013年   672篇
  2012年   891篇
  2011年   809篇
  2010年   557篇
  2009年   499篇
  2008年   575篇
  2007年   531篇
  2006年   470篇
  2005年   433篇
  2004年   310篇
  2003年   283篇
  2002年   247篇
  2001年   180篇
  2000年   143篇
  1999年   106篇
  1998年   68篇
  1997年   55篇
  1996年   46篇
  1995年   34篇
  1994年   43篇
  1993年   36篇
  1992年   40篇
  1991年   31篇
  1990年   25篇
  1989年   12篇
  1988年   9篇
  1987年   12篇
  1986年   7篇
  1985年   10篇
  1984年   8篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1978年   2篇
  1969年   2篇
  1968年   3篇
  1966年   3篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
941.
Indirubin, a traditional Chinese medicine, is used to treat autoimmune diseases in clinics. However, the effects of indirubin on the immunosuppressive CD4+CD25+Foxp3+ regulatory T cells (Treg) have not been addressed. Thus, we aimed to investigate the effects of indirubin on CD4+CD25+Treg cells in immune thrombocytopenia (ITP) CBA mice, which were established by immunization with Wistar rat platelets. 50 mg/kg indirubin treatment daily for 4 weeks significantly decreased anti-platelet antibody production and prevented the decrease of platelets caused by immunization in ITP mice. Consistently, indirubin significantly enhanced the percentage and cell number of CD4+CD25+Foxp3+Treg cells in the peripheral blood, spleen and lymph nodes. We also observed a significant increase of the frequency and cell number of CD4+CD25+Foxp3+Treg cells in the thymus upon indirubin treatment. Furthermore, CD4+CD25+Treg cells from indirubin-treated mice showed similar immunosuppression on T effector cells as compared to those from control mice. Altogether, indirubin ameliorates ITP by enhancing CD4+CD25+Foxp3+Treg cell level with preserving immunosuppressive function.  相似文献   
942.
Immune response-related genes play a major role in colorectal carcinogenesis by mediating inflammation or immune-surveillance evasion. Although remarkable progress has been made to investigate the underlying mechanism, the understanding of the complicated carcinogenesis process was enormously hindered by large-scale tumor heterogeneity. Development and carcinogenesis share striking similarities in their cellular behavior and underlying molecular mechanisms. The association between embryonic development and carcinogenesis makes embryonic development a viable reference model for studying cancer thereby circumventing the potentially misleading complexity of tumor heterogeneity. Here we proposed that the immune genes, responsible for intra-immune cooperativity disorientation (defined in this study as disruption of developmental expression correlation patterns during carcinogenesis), probably contain untapped prognostic resource of colorectal cancer. In this study, we determined the mRNA expression profile of 137 human biopsy samples, including samples from different stages of human colonic development, colorectal precancerous progression and colorectal cancer samples, among which 60 were also used to generate miRNA expression profile. We originally established Spearman correlation transition model to quantify the cooperativity disorientation associated with the transition from normal to precancerous to cancer tissue, in conjunction with miRNA-mRNA regulatory network and machine learning algorithm to identify genes with prognostic value. Finally, a 12-gene signature was extracted, whose prognostic value was evaluated using Kaplan–Meier survival analysis in five independent datasets. Using the log-rank test, the 12-gene signature was closely related to overall survival in four datasets (GSE17536, n = 177, p = 0.0054; GSE17537, n = 55, p = 0.0039; GSE39582, n = 562, p = 0.13; GSE39084, n = 70, p = 0.11), and significantly associated with disease-free survival in four datasets (GSE17536, n = 177, p = 0.0018; GSE17537, n = 55, p = 0.016; GSE39582, n = 557, p = 4.4e-05; GSE14333, n = 226, p = 0.032). Cox regression analysis confirmed that the 12-gene signature was an independent factor in predicting colorectal cancer patient’s overall survival (hazard ratio: 1.759; 95% confidence interval: 1.126–2.746; p = 0.013], as well as disease-free survival (hazard ratio: 2.116; 95% confidence interval: 1.324–3.380; p = 0.002).  相似文献   
943.
Influenza virus vaccine (IVV) is a promising research domain that is closely related to global health matters, which has been acknowledged not only by scientists and technology developers, but also by policy-makers. Meanwhile, patents encompass valuable technological information and reflect the latest technological inventions as well as the innovative capability of a nation. However, little research has examined this up-and-coming research field using patent bibliometric method. Thus, this paper (a) designs the technology classification system and search strategy for the identification of IVV; and (b) presents a longitudinal analysis of the global IVV development based on the European Patent Office (EPO) patents. Bibliometric analysis is used to rank countries, institutions, inventors and technology subfields contributing to IVV technical progress. The results show that the global trends of IVV are a multi-developing feature of variety but an uneven technical resource distribution. Although the synthetic peptide vaccine is a comparatively young field, it already demonstrates the powerful vitality and the enormous development space. With the worldwide competition increasing, all nations especially China should be looking to increase devotion, enhance capability and regard effectiveness of technological innovation.  相似文献   
944.
945.
Dendritic cells (DCs) play important roles in initiation of the pathogenic processes of autoimmune disorders, such as rheumatoid arthritis (RA). Tolerogenic dendritic cells (tolDCs) are generated from naïve DCs and induce T cell tolerance; thus, they represent a promising strategy for specific cellular therapy for autoimmune diseases. In this study, we generated green fluorescent protein (GFP)-labeled tolDCs and confirmed their phenotypes and biological functions. We found that tolDCs suppressed the memory lymphocyte response and exhibited strong tolerogenic potential; thus, these cells show promise for the treatment of autoimmune diseases. Additionally, a collagen-induced arthritis (CIA) mouse model was used to test the role of tolDCs in vivo. The results of a further mechanistic experiment revealed that tolDCs suppressed inflammatory arthritis at least partially by up-regulating regulatory T (Treg) cells. Collectively, our data suggest that tolDCs may be used as a promising alternative therapy for inflammatory arthritis.  相似文献   
946.
947.
Oxidative stress is mechanistically implicated in the pathogenesis of myocardial injury and the subsequent fibrogenic tissue remodeling. Therapies targeting oxidative stress in the process of myocardial fibrogenesis are still lacking and thus remain as an active research area in myocardial injury management. The current study evaluated the effects of a NADPH oxidase inhibitor, apocynin, on the production of reactive oxygen species and the development of myocardial fibrogenesis in isoproterenol (ISO)-induced myocardial injury mouse model. The results revealed a remarkable effect of apocynin on attenuating the development of myocardial necrotic lesions, inflammation and fibrogenesis. Additionally, the protective effects of apocynin against myocardial injuries were associated with suppressed expression of an array of genes implicated in inflammatory and fibrogenic responses. Our study thus provided for the first time the histopathological and molecular evidence supporting the therapeutic value of apocynin against the development of myocardial injuries, in particular, myocardial fibrogenesis, which will benefit the mechanism-based drug development targeting oxidative stress in preventing and/or treating related myocardial disorders.  相似文献   
948.
It has been demonstrated that apolipoprotein M (APOM) is a vasculoprotective constituent of high density lipoprotein (HDL), which could be related to the anti-atherosclerotic property of HDL. Investigation of regulation of APOM expression is of important for further exploring its pathophysiological function in vivo. Our previous studies indicated that expression of APOM could be regulated by platelet activating factor (PAF), transforming growth factors (TGF), insulin-like growth factor (IGF), leptin, hyperglycemia and etc., in vivo and/or in vitro. In the present study, we demonstrated that palmitic acid could significantly inhibit APOM gene expression in HepG2 cells. Further study indicated neither PI-3 kinase (PI3K) inhibitor LY294002 nor protein kinase C (PKC) inhibitor GFX could abolish palmitic acid induced down-regulation of APOM expression. In contrast, the peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) antagonist GSK3787 could totally reverse the palmitic acid-induced down-regulation of APOM expression, which clearly demonstrates that down-regulation of APOM expression induced by palmitic acid is mediated via the PPARβ/δ pathway.  相似文献   
949.
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号