首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   511篇
  免费   81篇
  国内免费   1篇
  2022年   6篇
  2021年   4篇
  2020年   8篇
  2019年   10篇
  2018年   7篇
  2017年   3篇
  2016年   10篇
  2015年   30篇
  2014年   26篇
  2013年   30篇
  2012年   35篇
  2011年   33篇
  2010年   16篇
  2009年   15篇
  2008年   30篇
  2007年   23篇
  2006年   25篇
  2005年   22篇
  2004年   35篇
  2003年   21篇
  2002年   15篇
  2001年   12篇
  2000年   18篇
  1999年   12篇
  1998年   11篇
  1997年   4篇
  1996年   6篇
  1995年   6篇
  1994年   4篇
  1992年   11篇
  1991年   9篇
  1990年   13篇
  1989年   5篇
  1988年   5篇
  1987年   12篇
  1986年   11篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1975年   2篇
  1974年   4篇
  1973年   4篇
  1972年   2篇
  1969年   2篇
排序方式: 共有593条查询结果,搜索用时 46 毫秒
71.
Estrogen actions on follicle formation and early follicle development   总被引:4,自引:0,他引:4  
Estradiol-17beta (E(2)) affects late follicular development, whereas primordial follicle differentiation and early activation are believed to be independent of E(2). To test this hypothesis we compared numbers of primordial and primary follicles in wild-type and E(2)-deficient, aromatase knockout (ArKO) mice, and the immunohistochemical staining or mRNA expression of Mullerian inhibiting substance (MIS), Wilms tumor 1 (WT-1), and growth differentiation factor (GDF9), which are known to effect early follicular differentiation. Proliferating cell nuclear antigen (PCNA) staining was a marker of proliferative index. The effects of E(2) replacement for 3 wk in 7-wk-old ArKO and wild-type mice on these parameters were also tested. ArKO mice had reduced numbers of primordial and primary follicles compared with wild-type mice (63%, P < 0.001 and 60%, P = 0.062, respectively). This reduction was not corrected by E(2) treatment, suggesting that E(2) affects the initial formation or activation of primordial follicles. There was a significant increase in the diameters of the oocytes in primordial follicles of ArKO mice compared with mice of the wild type. There were no differences in the immunostaining of MIS, WT-1, and PCNA in primordial and primary follicles between wild-type and ArKO mice. The only difference was as a consequence of Sertoli and Leydig cells that develop in ovaries of ArKO mice. GDF9 mRNA expression was markedly increased in ArKO ovaries. E(2) treatment restored the ovarian follicular morphology in ArKO mice, and consequently the immunostaining patterns, but had no effect on early follicle numbers. In conclusion, E(2) has a role in controlling the size of the oocyte and primordial follicle pool in mice.  相似文献   
72.
Target antigens determine graft-versus-host disease phenotype   总被引:5,自引:0,他引:5  
Chronic graft-vs-host disease (cGVHD) is an increasingly frequent complication of allogeneic stem cell transplantation. Phenotypically, cGVHD differs from patient to patient; in particular, a subset of patients develops extensive cutaneous fibrosis. Similarly, graft-vs-host disease (GVHD) is distinct in inbred murine donor:recipient pairings, indicating a genetic component to disease phenotype. The B10.D2 -->BALB/c (H-2d) strain pairing uniquely recapitulates key pathologic features of fibrotic human cutaneous cGVHD. To distinguish whether this genetic component is due to differences in genes that modulate immune responses or to the specific Ags targeted, we asked whether skin-dominant cGVHD also develops in the B10 -->BALB.B (H-2b) and B10.BR -->BALB.K (H-2k) MHC-congenic pairings. Because each MHC haplotype presents different peptides and selects different T cell repertoires, GVHD in each donor:recipient pair undoubtedly targets different Ags. We found that, in contrast to BALB/c recipients, BALB.B mice never manifested skin disease while BALB.K mice developed a modified form of skin disease. Instead, BALB.B and BALB.K recipients developed systemic GVHD which was absent in BALB/c mice. Moreover, in (B10 x B10.D2)F1 -->(BALB.B x BALB/c)F1 H-2b/d transplants, recipients developed both cutaneous and systemic disease. Thus, the selection of immunodominant Ags determines the target and character of GVHD, providing insight into the genetic basis for different forms of GVHD.  相似文献   
73.
Human cytomegalovirus (HCMV) virion assembly takes place in the nucleus and cytoplasm of infected cells. The HCMV virion tegument protein pp150 (ppUL32) is an essential protein of HCMV and has been suggested to play a role in the cytoplasmic phase of HCMV assembly. To further define its role in viral assembly and to identify host cell proteins that interact with pp150 during viral assembly, we utilized yeast two-hybrid analyses to detect an interaction between pp150 and Bicaudal D1 (BicD1), a protein thought to play a role in trafficking within the secretory pathway. BicD1 is known to interact with the dynein motor complex and the Rab6 GTPase. The interaction between pp150 and BicD1 was confirmed by coimmunoprecipitation and fluorescence resonance energy transfer. Depletion of BicD1 with short hairpin RNA (shRNA) caused decreased virus yield and a defect in trafficking of pp150 to the cytoplasmic viral assembly compartment (AC), without altering trafficking to the AC of another essential tegument protein, pp28, or the viral glycoprotein complex gM/gN. The C terminus of BicD1 has been previously shown to interact with the GTPase Rab6, suggesting a potential role for Rab6-mediated vesicular trafficking in HCMV assembly. Finally, overexpression of the N terminus of truncated BicD1 acts in a dominant-negative manner and leads to disruption of the AC and a decrease in the assembly of infectious virus. This phenotype was similar to that observed following overexpression of dynamitin (p50) and provided additional evidence that morphogenesis of the AC and virus assembly were dynein dependent.Human cytomegalovirus (HCMV) (human herpesvirus 5 [HHV-5]), the prototypical betaherpesvirus, is ubiquitous in humans and establishes a persistent infection in the host (19). HCMV also reinfects healthy seropositive individuals, suggesting another mechanism for maintaining persistence in a population (9). Intrauterine transmission and HCMV infection of the developing fetus constitute a leading viral cause of birth defects (32). HCMV is also a leading cause of opportunistic infections in immunocompromised patients, including transplant recipients and patients with AIDS (10, 20). HCMV infection has also been implicated as a cofactor in such diverse diseases as atherosclerosis and cancer (8, 17, 33, 66).HCMV replicates its genome in the nucleus, and acquisition of the final tegument and envelope is thought to occur in the cytoplasm of infected cells (73, 77). Envelopment of HCMV has been reported to occur by budding into cytoplasmic vacuoles that are composed of HCMV glycoproteins required for the assembly of infectious virions (37). The fully mature virus is released from the cell through either exocytosis or, possibly, lysis of the infected cells (56). The nucleic acid-containing capsid is embedded in a proteinaceous tegument layer that occupies the space between the nucleocapsid and the envelope. The tegument contains approximately 40% of the virion protein mass and approximately 20 to 25 known virion proteins, most of which are phosphorylated (40, 44). The assembly pathway and protein interactions required for formation of the tegument layer and the role of individual tegument proteins in the replication and assembly of infectious HCMV remain poorly understood. Deletion of viral genes encoding some tegument proteins results in varying levels of impairment in virus production (11-13, 35, 43, 45, 53, 68). Some tegument proteins, such as pp28 (pUL99) and ppUL25, are expressed only in the cytoplasm of infected cells during HCMV replication, whereas others, such as ppUL53 and pp65 (pUL83), are expressed in the nuclei of cells early in infection but are localized predominantly in the cytoplasm late in infection (68). Others, such as the tegument protein ppUL69, are expressed only in the nuclei of infected cells. Finally, the intracellular localization of other tegument proteins, such as pp150 (pUL32), is less well defined in that both nuclear and cytoplasmic localizations have been described (34, 68).HCMV pp150 (basic phosphoprotein [BPP], pUL32) is the 1,048-amino-acid product of the UL32 gene of HCMV and an abundant constituent of the HCMV virion. Homologues of pp150 are found in other betaherpesviruses, including chimpanzee CMV, rat CMV, mouse CMV, HHV-6, and HHV-7, but not in alpha- or gammaherpesviruses (2). It is expressed late in HCMV infection (15, 68). It comprises 9.1% of infectious virion mass and 2% of the mass of dense bodies, suggesting that it is preferentially incorporated into virions (87). It has an estimated molecular mass of 113 kDa and is posttranslationally modified by phosphorylation and glycosylation, resulting in a molecular mass of 150 kDa in purified virus preparations analyzed by SDS-PAGE (41, 42, 65). pp150 has been classified as a tegument protein based on its presence in virion preparation, noninfectious enveloped particles, and cytoplasmic nucleocapsids but not in immature nuclear capsids (27, 28, 40). It has been suggested that pp150 contacts the capsids through the distal end of the capsomeres or through the triplex subunits that interlink them (16, 86). It has been reported to bind HCMV capsids in vitro through its amino one-third (6). We have also noted association of pp150 with the virion capsid by cryo-immunoelectron microscopy (W. Britt and H. Zhou, UCLA, Los Angeles, CA, unpublished findings). In primary human foreskin fibroblast (HFF) cells infected with HCMV, pp150 accumulates in a juxtanuclear structure that is termed the assembly compartment (AC), which colocalizes with markers of the distal secretory pathway and with other tegument proteins, including pp28 and pp65 and envelope glycoproteins gB, gH, and gM/gN (68). The virus-induced AC appears to overlap with microtubules emanating from the microtubule-organizing center (MTOC) and is proposed to be a cytoplasmic site of virion assembly (37, 68).The function of pp150 is unknown, although its close association with the nucleocapsid suggests potential involvement in nuclear targeting during entry and in nuclear targeting of the encapsidated viral DNA, capsid tegumentation, and/or envelopment late in infection. It is essential for production of infectious virus, since the deletion of the UL32 open reading frame (ORF) leads to loss of virus replication and has been reported to be important in cytoplasmic maturation of HCMV, especially in viral egress (2, 22, 84, 91, 92). In cells infected with ΔUL32 virus, which lacks pp150, fewer virus particles accumulated in the cytoplasm, although nuclear steps in virus assembly were not affected (84). It was also observed that in the absence of pp150, nucleocapsids were present in the viral assembly compartment but failed to proceed further to vesicle transport-associated release (84). These observations, together with pp150 abundance in the virion, suggest a primary contribution for this structural protein in the morphogenesis and/or cytoplasmic transport of progeny virion particles to sites of virion envelopment.Since pp150 has no predicted intracellular trafficking signals, its localization to the AC in virus-infected cells has been postulated to be dependent on interactions with cellular and/or viral proteins. Using yeast two-hybrid (Y2H) screening experiments we identified the cellular protein Bicaudal D1 (BicD1) as an interacting cellular protein. Bicaudal D was originally defined as a Drosophila protein that is involved in establishing the asymmetric cytoplasm in the developing oocyte (82, 89). Two homologues of Bicaudal D, BicD1 and BicD2, have been reported in humans, and these proteins have been reported to be involved in dynein-mediated microtubule transport as well as in COPI-independent Golgi-endoplasmic reticulum (ER) transport (38, 39, 55). Microtubule-dependent transport is an energy-dependent active transport system that includes both positive-end (directed away from the MTOC) and negative-end (directed toward the MTOC) transport. The direction of transport depends on cargo interactions with the molecular motors directing this transport, with dynein being associated with negative-end transport and kinesin with positive-end transport. BicD1 colocalizes with Rab6a in the trans-Golgi network and on cytoplasmic vesicles that associate with Golgi membranes in a Rab6-dependent manner secondary to a Rab6 binding domain at the C terminus of BicD1, suggesting an important role for BicD1 as an adaptor for dynein-dependent transport in the cell (55). In addition to having a role in the Golgi-ER trafficking, BicD1 has been shown to regulate anchoring of microtubules to the centrosome, as BICD1/2 knockdown induced microtubule unfocusing, with microtubules no longer appearing to radiate from the centrosome (26). BicD1 binds to its cargo via its C-terminal domain and to the dynein motor via its N-terminal domain (38). In this study we demonstrated that pp150 and BicD1 interact and that this interaction was required for localization of pp150 to the AC in virus-infected cells. In addition, we demonstrated that inhibition of BicD1 expression by short hairpin RNA (shRNA) led to a reduction in the yield of infectious virus. Finally, we demonstrated that formation of the AC and the assembly of infectious virions were dynein dependent, suggesting a critical role in microtubules in the production of infectious HCMV. Together, these results argue that HCMV replication is dependent on efficient localization of pp150 to the AC through its interaction with BicD1 and that pp150 localization to the AC is dynein dependent.  相似文献   
74.
Nonhuman primate models of intrauterine cytomegalovirus infection   总被引:9,自引:0,他引:9  
Congenital human cytomegalovirus (HCMV) infection has long been recognized as a threat to the developing fetus, even though studies have shown that only a subset of congenital infections results in clinical signs of disease. Among the estimated 8000 children who develop sequelae from congenital CMV infection each year in the United States alone, most suffer permanent developmental defects within the central nervous system. Because there is currently no approved vaccine for HCMV, and anti-HCMV drugs are not administered to gravid women with congenital infection because of potential toxicity to the fetus, there is a clear clinical need for effective strategies that minimize infection in the mother, transplacental transmission of the virus, and/or fetal disease. Animal models provide a method to understand the mechanisms of HCMV persistence and pathogenesis, and allow for testing of novel strategies that limit prenatal infection and disease. The rhesus macaque model is especially well suited for these tasks because monkeys and humans share strong developmental, immunological, anatomical, and biochemical similarities due to their close phylogenetic relationship. This nonhuman primate model provides an invaluable system to accelerate the clinical development of promising new therapies for the treatment of human disease. This review addresses salient findings with the macaque model as they relate to HCMV infection and potential avenues of discovery, including studies of intrauterine CMV infection. The complexity of the natural history of HCMV is discussed, along with the ethical and logistical issues associated with studies during pregnancy, the recent contributions of animal research in this field of study, and future prospects for increasing our understanding of immunity against HCMV disease.  相似文献   
75.
Circadian clocks of most organisms are synchronized with the 24-hour solar day by the changes of light and dark. In Drosophila, both the visual photoreceptors in the compound eyes as well as the blue-light photoreceptor Cryptochrome expressed within the brain clock neurons contribute to this clock synchronization. A specialized photoreceptive structure located between the retina and the optic lobes, the Hofbauer-Buchner (H-B) eyelet, projects to the clock neurons in the brain and also participates in light synchronization. The compound eye photoreceptors and the H-B eyelet contain Rhodopsin photopigments, which activate the canonical invertebrate phototransduction cascade after being excited by light. We show here that 2 of the photopigments present in these photoreceptors, Rhodopsin 5 (Rh5) and Rhodopsin 6 (Rh6), contribute to light synchronization in a mutant (norpA(P41) ) that disrupts canonical phototransduction due to the absence of Phospholipase C-β (PLC-β). We reveal that norpA(P41) is a true loss-of-function allele, resulting in a truncated PLC-β protein that lacks the catalytic domain. Light reception mediated by Rh5 and Rh6 must therefore utilize either a different (nonretinal) PLC-β enzyme or alternative signaling mechanisms, at least in terms of clock-relevant photoreception. This novel signaling mode may distinguish Rhodopsin-mediated irradiance detection from image-forming vision in Drosophila.  相似文献   
76.
The acyl-CoA binding protein (ACBP) is a small intracellular protein that specifically binds and transports medium to long-chain acyl-CoA esters. Previous studies have shown that ACBP is ubiquitously expressed but found at particularly high levels in lipogenic cell types as well as in many epithelial cells. Here we show that ACBP is widely expressed in human and mouse kidney epithelium, with the highest expression in the proximal convoluted tubules. To elucidate the role of ACBP in the renal epithelium, mice with targeted disruption of the ACBP gene (ACBP(-/-)) were used to study water and NaCl balance as well as urine concentrating ability in metabolic cages. Food intake and urinary excretion of Na(+) and K(+) did not differ between ACBP(-/-) and (+/+) mice. Interestingly, however, water intake and diuresis were significantly higher at baseline in ACBP(-/-) mice compared with that of (+/+) mice. Subsequent to 20-h water deprivation, ACBP(-/-) mice exhibited increased diuresis, reduced urine osmolality, elevated hematocrit, and higher relative weight loss compared with (+/+) mice. There were no significant differences in plasma concentrations of renin, corticosterone, and aldosterone between mice of the two genotypes. After water deprivation, renal medullary interstitial fluid osmolality and concentrations of Na(+), K(+), and urea did not differ between genotypes and cAMP excretion was similar. Renal aquaporin-1 (AQP1), -2, and -4 protein abundances did not differ between water-deprived (+/+) and ACBP(-/-) mice; however, ACBP(-/-) mice displayed increased apical targeting of pS256-AQP2. AQP3 abundance was lower in ACBP(-/-) mice than in (+/+) control animals. Thus we conclude that ACBP is necessary for intact urine concentrating ability. Our data suggest that the deficiency in urine concentrating ability in the ACBP(-/-) may be caused by reduced AQP3, leading to impaired efflux over the basolateral membrane of the collecting duct.  相似文献   
77.
78.
Infection with gammaherpesviruses, alphaherpesviruses, and betacoronaviruses can result in widespread mRNA degradation, in each case initiated predominantly by a single viral factor. Although not homologous, these factors exhibit significant mechanistic similarities. In cells, each targets translatable RNAs for cleavage and requires host Xrn1 to complete RNA degradation, although the mechanism of targeting and the position of the primary cleavage differ. Thus, multiple host shutoff factors have converged upon a common mRNA degradation pathway.  相似文献   
79.
The newly described piscine reovirus (PRV) appears to be associated with the development of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon Salmo salar L. PRV seems to be ubiquitous among fish in Norwegian salmon farms, but high viral loads and tissue distribution support a causal relationship between virus and disease. In order to improve understanding of the distribution of PRV in the salmon production line, we quantified PRV by using real-time PCR on heart samples collected at different points in the life cycle from pre-smolts to fish ready for slaughter. PRV positive pre-smolts were found in about 36% of the freshwater cohorts and a general increase in viral load was observed after their transfer to seawater. A reduction in viral loads was recorded when fish approached slaughter (18 mo in sea cages). Sequencing of positive samples did not support the hypothesis that outbreaks are caused by the spreading of a particular (virulent) strain of PRV.  相似文献   
80.
Heart and skeletal muscle inflammation (HSMI) is a disease that affects farmed Atlantic salmon Salmo salar L. several months after the fish have been transferred to seawater. Recently, a new virus called piscine reovirus (PRV) was identified in Atlantic salmon from an outbreak of HSMI and in experimentally challenged fish. PRV is associated with the development of HSMI, and has until now only been detected in Atlantic salmon. This study investigates whether the virus is also present in wild fish populations that may serve as vectors for the virus. The virus was found in few of the analyzed samples so there is probably a more complex relationship that involves several carriers and virus -reservoirs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号