首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3123篇
  免费   287篇
  国内免费   1篇
  2022年   17篇
  2021年   37篇
  2020年   14篇
  2019年   27篇
  2018年   35篇
  2017年   29篇
  2016年   53篇
  2015年   90篇
  2014年   147篇
  2013年   168篇
  2012年   206篇
  2011年   197篇
  2010年   129篇
  2009年   125篇
  2008年   158篇
  2007年   170篇
  2006年   186篇
  2005年   176篇
  2004年   168篇
  2003年   145篇
  2002年   169篇
  2001年   32篇
  2000年   35篇
  1999年   55篇
  1998年   69篇
  1997年   47篇
  1996年   45篇
  1995年   42篇
  1994年   33篇
  1993年   37篇
  1992年   48篇
  1991年   42篇
  1990年   42篇
  1989年   32篇
  1988年   37篇
  1987年   17篇
  1986年   16篇
  1985年   30篇
  1984年   34篇
  1983年   23篇
  1982年   34篇
  1981年   28篇
  1980年   25篇
  1979年   16篇
  1978年   17篇
  1977年   17篇
  1976年   13篇
  1974年   10篇
  1973年   12篇
  1972年   10篇
排序方式: 共有3411条查询结果,搜索用时 15 毫秒
991.
C5L2 is an enigmatic serpentine receptor that is co-expressed with the C5a receptor on many cells including polymorphonuclear neutrophils. The apparent absence of coupling of C5L2 with G proteins suggests that this receptor may modulate the biological activity of C5a, perhaps by acting as a decoy receptor. Alternatively, C5L2 may affect C5a function through formation of a heteromeric complex with the C5aR, or it may utilize a G protein-independent signaling pathway. Here we show that in mice bearing a targeted deletion of C5L2, the biological activity of C5a/C5a(desArg) is enhanced both in vivo and in vitro. The biological role of C5L2 thus appears to be limiting to the pro-inflammatory response to the anaphylatoxin. Accordingly, up-regulation of C5L2 may be of benefit in inflammatory states driven by C5a, including sepsis, asthma, cystic fibrosis, and chronic obstructive lung disease.  相似文献   
992.
Bonamia ostreae is a protozoan parasite of the flat oyster, Ostrea edulis, which has caused significant loss of oysters in Europe over the last decade. B. ostreae was purified from infected flat oysters and DNA was extracted. The nearly complete small subunit rDNA gene of B. ostreae was amplified using universal oligonucleotides and the PCR product was cloned and sequenced. BLAST research with this sequence revealed similarities to Haplosporidium nelsoni, Haplosporidium costale, and Minchinia teredinis. These data suggest that B. ostreae may be included in the genus Haplosporidium. Specific B. ostreae primers were designed for labeling, by PCR, a probe. This probe was successfully used by in situ hybridization to detect B. ostreae in infected fiat oysters, thus confirming the accuracy of this SSU rDNA sequence. The probe lead also to the detection of Bonamia sp. in infected Tiostrea chilensis and H. nelsoni in infected Crassostrea virginica but not Mikrocytos mackini infected Crassostrea gigas. These primers were also used to detect B. ostreae from infected oyster tissues by PCR. This B. ostreae SSU rDNA gene sequence provides genetic information as a first step toward elucidation of the taxonomic boundaries among the microcell organisms. Moreover, the development of DNA detection assays will be valuable specific diagnostic tools.  相似文献   
993.
The biological inactivation of enkephalins by neutral endopeptidase (enkephalinase, NEP, EC3.4.24.11) represents a major mechanism for the termination of enkephalinergic signalling in brain. A pharmacological blockade of NEP-activity enhances extracellular enkephalin concentrations and induces opioid-dependent analgesia. Recently, knockout mice lacking the enzyme NEP have been developed [Lu et al., J. Exp. Med. 1995;181:2271-2275]. The present study investigates the functional consequences and biochemical compensatory strategies of a systemic elimination of NEP activity in these knockout mice. Using biochemical and behavioural tests we found that the lack of NEP activity in brain is not compensated by enhanced activities of alternative enkephalin-degrading enzymes. Also no change in enkephalin biosynthesis was detectable by in situ methods quantifying striatal proenkephalin-mRNA levels in NEP-deficient mice compared with wildtype. Only a 21% reduction of mu receptor density in crude brain homogenates of NEP knockout mice was observed, while delta- and kappa-opioid receptor densities were unchanged. This receptor downregulation was also confirmed functionally in the hot-plate paradigm. NEP knockouts developed normally, but showed enhanced aggressive behaviour in the resident-intruder paradigm, and altered locomotor activity as assessed in the photobeam system. Thus, although NEP plays a substantial role in enkephalinergic neurotransmission, the biochemical adaptations within the opioid system of NEP-deficient mice are of only modest nature.  相似文献   
994.
Ischemia with subsequent reperfusion (IR) injury is a significant clinical problem that occurs after physical and surgical trauma, myocardial infarction, and organ transplantation. IR injury of mouse skeletal muscle depends on the presence of both natural IgM and an intact C pathway. Disruption of the skeletal muscle architecture and permeability also requires mast cell (MC) participation, as revealed by the fact that IR injury is markedly reduced in c-kit defective, MC-deficient mouse strains. In this study, we sought to identify the pathobiologic MC products expressed in IR injury using transgenic mouse strains with normal MC development, except for the lack of a particular MC-derived mediator. Histologic analysis of skeletal muscle from BALB/c and C57BL/6 mice revealed a strong positive correlation (R(2) = 0.85) between the extent of IR injury and the level of MC degranulation. Linkage between C activation and MC degranulation was demonstrated in mice lacking C4, in which only limited MC degranulation and muscle injury were apparent. No reduction in injury was observed in transgenic mice lacking leukotriene C(4) synthase, hemopoietic PGD(2) synthase, N-deacetylase/N-sulfotransferase-2 (enzyme involved in heparin biosynthesis), or mouse MC protease (mMCP) 1. In contrast, muscle injury was significantly attenuated in mMCP-5-null mice. The MCs that reside in skeletal muscle contain abundant amounts of mMCP-5 which is the serine protease that is most similar in sequence to human MC chymase. We now report a cytotoxic activity associated with a MC-specific protease and demonstrate that mMCP-5 is critical for irreversible IR injury of skeletal muscle.  相似文献   
995.
Chloroplast RNA splicing 2 (CRS2) is a nuclear-encoded protein required for the splicing of nine group II introns in maize chloroplasts. CRS2 functions in the context of splicing complexes that include one of two CRS2-associated factors (CAF1 and CAF2). The CRS2-CAF1 and CRS2-CAF2 complexes are required for the splicing of different subsets of CRS2-dependent introns, and they bind tightly and specifically to their genetically defined intron targets in vivo. The CRS2 amino acid sequence is closely related to those of bacterial peptidyl-tRNA hydrolases (PTHs). To identify the structural differences between CRS2 and bacterial PTHs responsible for CRS2's gains of CAF binding and intron splicing functions, we determined the structure of CRS2 by X-ray crystallography. The fold of CRS2 is the same as that of Escherichia coli PTH, but CRS2 has two surfaces that differ from the corresponding surfaces in PTH. One of these is more hydrophobic in CRS2 than in PTH. Site-directed mutagenesis of this surface blocked CRS2-CAF complex formation, indicating that it is the CAF binding site. The CRS2 surface corresponding to the putative tRNA binding face of PTH is considerably more basic than in PTH, suggesting that CRS2 interacts with group II intron substrates via this surface. Both the sequence and the structural context of the amino acid residues essential for peptidyl-tRNA hydrolase activity are conserved in CRS2, yet expression of CRS2 is incapable of rescuing a pth(ts)E.coli strain.  相似文献   
996.
The voltage-dependent K+ channel 4.3 (Kv4.3) is one of the major molecular correlates encoding a class of rapidly inactivating K+ currents, including the transient outward current in the heart (Ito) and A currents (IA) in neuronal and smooth muscle preparations. Recent studies have shown that Ito in human atrial myocytes and IA in murine colonic myocytes are modulated by Ca2+/calmodulin-dependent protein kinase II (CaMKII); however, the molecular target of CaMKII in these studies has not been elucidated. We performed experiments to investigate whether CaMKII could regulate Kv4.3 currents directly. Inclusion of the autothiophosphorylated form of CaMKII in the patch pipette (10 nM) prolonged Kv4.3 currents such that the time required to reach 50% inactivation from peak more than doubled, with positive shifts in voltage dependence of both activation and inactivation. In contrast, the rate of recovery from inactivation was accelerated under these conditions. CaMKII-inhibitory peptide or KN-93 produced effects opposite to that above; thus the rate of inactivation was increased, and recovery from inactivation decreased. A number of mutagenesis experiments were conducted on the three candidate CaMKII consensus sequence sites on the channel. Mutations at S550A, located at the COOH-terminal region of the channel, resulted in currents that inactivated more rapidly but recovered from inactivation at a slower rate than that of wild-type controls. In addition, these currents were unaffected by dialysis with either autothiophosphorylated CaMKII or the specific inhibitory peptide of CaMKII, suggesting that CaMKII slows the inactivation and accelerates the rate of recovery from inactivation of Kv4.3 currents by a direct effect at S550A, located at the COOH-terminal region of the channel.  相似文献   
997.
The diversity of purple and green sulfur bacteria in the multilayered sediments of the Ebro Delta was investigated. Specific oligonucleotide primers for these groups were used for the selective amplification of 16S rRNA gene sequences. Subsequently, amplification products were separated by denaturing gradient gel electrophoresis and sequenced, which yielded a total of 32 sequences. Six of the sequences were related to different cultivated members of the green sulfur bacteria assemblage, whereas seven fell into the cluster of marine or halophilic Chromatiaceae. Six sequences were clustered with the family Ectothiorhodospiraceae, three of the six being closely related to chemotrophic bacteria grouped together with Halorhodospira genus, and the other three forming a group related to the genus Ectothiorhodospira. The last thirteen sequences constituted a cluster where no molecular isolate from microbial mats has so far been reported. Our results indicate that the natural diversity in the ecosystem studied has been significantly underestimated in the past and point out the presence of novel species not related to all known purple sulfur bacteria. Furthermore, the detection of green sulfur bacteria, after only an initial step of enrichment, suggests that -- with the appropriate methodology -- several genera, such as Prosthecochloris, could be established as regular members of marine microbial mats.  相似文献   
998.
The molecular clock mediates leptin-regulated bone formation   总被引:23,自引:0,他引:23  
Fu L  Patel MS  Bradley A  Wagner EF  Karsenty G 《Cell》2005,122(5):803-815
The hormone leptin is a regulator of bone remodeling, a homeostatic function maintaining bone mass constant. Mice lacking molecular-clock components (Per and Cry), or lacking Per genes in osteoblasts, display high bone mass, suggesting that bone remodeling may also be subject to circadian regulation. Moreover, Per-deficient mice experience a paradoxical increase in bone mass following leptin intracerebroventricular infusion. Thus, clock genes may mediate the leptin-dependent sympathetic regulation of bone formation. We show that expression of clock genes in osteoblasts is regulated by the sympathetic nervous system and leptin. Clock genes mediate the antiproliferative function of sympathetic signaling by inhibiting G1 cyclin expression. Partially antagonizing this inhibitory loop, leptin also upregulates AP-1 gene expression, which promotes cyclin D1 expression, osteoblast proliferation, and bone formation. Thus, leptin determines the extent of bone formation by modulating, via sympathetic signaling, osteoblast proliferation through two antagonistic pathways, one of which involves the molecular clock.  相似文献   
999.
Molecular analysis of bacteria enriched under in situ-like conditions and mechanically isolated by micromanipulation showed that a hitherto-uncultivated microaerophilic bacterium thriving in oxygen-sulfide counter-gradients (R. Thar and M. Kühl, Appl. Environ. Microbiol. 68:6310-6320, 2000) is affiliated with the epsilon-subdivision of the Proteobacteria. The affiliation was confirmed by the use of whole-cell hybridization with newly designed specific oligonucleotide probes. The bacterium belongs to a new genus and received the provisional name "Candidatus Thioturbo danicus."  相似文献   
1000.
Enrichment of medium with yeast extract and tryptone increased growth and lactic acid production in batch cultures of Lactobacillus casei ssp. rhamnosus. A reliable kinetic model that explicitly expresses the strong relationship between microbial growth, lactic acid production and medium enrichment is provided and validated using experimental data obtained with six different medium compositions. Revisions requested 2 February 2005 and 26 July 2005; Revisions received 25 July 2005 and 9 September 2005  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号