首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2205篇
  免费   213篇
  国内免费   1篇
  2021年   27篇
  2020年   27篇
  2019年   21篇
  2018年   26篇
  2017年   24篇
  2016年   41篇
  2015年   82篇
  2014年   87篇
  2013年   94篇
  2012年   136篇
  2011年   120篇
  2010年   69篇
  2009年   79篇
  2008年   82篇
  2007年   80篇
  2006年   78篇
  2005年   60篇
  2004年   67篇
  2003年   66篇
  2002年   50篇
  2001年   58篇
  2000年   63篇
  1999年   50篇
  1998年   34篇
  1997年   20篇
  1996年   20篇
  1995年   22篇
  1994年   28篇
  1993年   24篇
  1992年   41篇
  1991年   46篇
  1990年   48篇
  1989年   44篇
  1988年   48篇
  1987年   30篇
  1986年   30篇
  1985年   35篇
  1984年   44篇
  1983年   33篇
  1982年   32篇
  1981年   27篇
  1980年   25篇
  1979年   18篇
  1978年   30篇
  1977年   17篇
  1976年   20篇
  1975年   19篇
  1974年   20篇
  1973年   25篇
  1967年   13篇
排序方式: 共有2419条查询结果,搜索用时 218 毫秒
141.
Meaningful dynamics information can be extracted from multiple experimental structures of the same, or closely related, proteins or RNAs. The covariance matrix of atom positions is decomposable into its principal components, and in this way, it is possible to rank-order the changes in the set of structures, and to determine what the most significant changes are. Usually, only a few principal components dominate the motions of the structures, and these usually relate to the functional dynamics. This dynamics information provides strong evidence for the plasticity of protein and RNA structures, and also suggests that these structures almost always have a highly limited repertoire of motions. In some cases, such as HIV protease, the dominant motions are opening and closing over the active site. For myoglobin, the changes are much smaller, reflecting in part the small changes in sequence, but nonetheless they show characteristic details that depend on the species. Sets of structures can also be used to derive the effective microscopic forces that are forcing a given conformational transition.  相似文献   
142.
The endosomal LeNHX2 ion transporter exchanges H+ with K+ and, to lesser extent, Na+. Here, we investigated the response to NaCl supply and K+ deprivation in transgenic tomato (Solanum lycopersicum L.) overexpressing LeNHX2 and show that transformed tomato plants grew better in saline conditions than untransformed controls, whereas in the absence of K+ the opposite was found. Analysis of mineral composition showed a higher K+ content in roots, shoots and xylem sap of transgenic plants and no differences in Na+ content between transgenic and untransformed plants grown either in the presence or the absence of 120 mm NaCl. Transgenic plants showed higher Na+/H+ and, above all, K+/H+ transport activity in root intracellular membrane vesicles. Under K+ limiting conditions, transgenic plants enhanced root expression of the high‐affinity K+ uptake system HAK5 compared to untransformed controls. Furthermore, tomato overexpressing LeNHX2 showed twofold higher K+ depletion rates and half cytosolic K+ activity than untransformed controls. Under NaCl stress, transgenic plants showed higher uptake velocity for K+ and lower cytosolic K+ activity than untransformed plants. These results indicate the fundamental role of K+ homeostasis in the better performance of LeNHX2 overexpressing tomato under NaCl stress.  相似文献   
143.
144.
Cardiac triacylglycerol (TG) catabolism critically depends on the TG hydrolytic activity of adipose triglyceride lipase (ATGL). Perilipin 5 (Plin5) is expressed in cardiac muscle (CM) and has been shown to interact with ATGL and its coactivator comparative gene identification-58 (CGI-58). Furthermore, ectopic Plin5 expression increases cellular TG content and Plin5-deficient mice exhibit reduced cardiac TG levels. In this study we show that mice with cardiac muscle-specific overexpression of perilipin 5 (CM-Plin5) massively accumulate TG in CM, which is accompanied by moderately reduced fatty acid (FA) oxidizing gene expression levels. Cardiac lipid droplet (LD) preparations from CM of CM-Plin5 mice showed reduced ATGL- and hormone-sensitive lipase-mediated TG mobilization implying that Plin5 overexpression restricts cardiac lipolysis via the formation of a lipolytic barrier. To test this hypothesis, we analyzed TG hydrolytic activities in preparations of Plin5-, ATGL-, and CGI-58-transfected cells. In vitro ATGL-mediated TG hydrolysis of an artificial micellar TG substrate was not inhibited by the presence of Plin5, whereas Plin5-coated LDs were resistant toward ATGL-mediated TG catabolism. These findings strongly suggest that Plin5 functions as a lipolytic barrier to protect the cardiac TG pool from uncontrolled TG mobilization and the excessive release of free FAs.  相似文献   
145.
We showed earlier that nutritional stress like starvation or high-fat diet resulted in phenotypic changes in the lipidomes of hepatocyte lipid droplets (LDs), representative for the pathophysiological status of the mouse model. Here we extend our former study by adding genetic stress due to knockout (KO) of adipocyte triglyceride lipase (ATGL), the rate limiting enzyme in LD lipolysis. An intervention trial for 6 weeks with male wild-type (WT) and ATGL-KO mice was carried out; both genotypes were fed lab chow or were exposed to short-time starvation. Isolated LDs were analyzed by LC-MS/MS. Triacylglycerol, diacylglycerol, and phosphatidylcholine lipidomes, in that order, provided the best phenotypic signatures characteristic for respective stresses applied to the animals. This was evidenced at lipid species level by principal component analysis, calculation of average values for chain-lengths and numbers of double bonds, and by visualization in heat maps. Structural backgrounds for analyses and metabolic relationships were elaborated at lipid molecular species level. Relating our lipidomic data to nonalcoholic fatty liver diseases of nutritional and genetic etiologies with or without accompanying insulin resistance, phenotypic distinction in hepatocyte LDs dependent on insulin status emerged. Taken together, lipidomes of hepatocyte LDs are sensitive responders to nutritional and genetic stress.  相似文献   
146.

Background

Continuing efforts in development of non-invasive prenatal genetic tests have focused on the isolation of fetal nucleated red blood cells (NRBCs) from maternal blood for decades. Because no fetal cell-specific antibody has been described so far, the present study focused on the development of monoclonal antibodies (mAbs) to antigens that are expressed exclusively on fetal NRBCs.Methods: Mice were immunized with fetal erythroid cell membranes and hybridomas screened for Abs using a multi-parameter fluorescence-activated cell sorting (FACS). Selected mAbs were evaluated by comparative FACS analysis involving Abs known to bind erythroid cell surface markers (CD71, CD36, CD34), antigen-i, galactose, or glycophorin-A (GPA). Specificity was further confirmed by extensive immunohistological and immunocytological analyses of NRBCs from umbilical cord blood and fetal and adult cells from liver, bone marrow, peripheral blood, and lymphoid tissues.Results: Screening of 690 hybridomas yielded three clones of which Abs from 4B8 and 4B9 clones demonstrated the desired specificity for a novel antigenic structure expressed on fetal erythroblast cell membranes. The antigenic structure identified is different from known surface markers (CD36, CD71, GPA, antigen-i, and galactose), and is not present on circulating adult erythroid cells, except for occasional detectability in adult bone marrow cells.Conclusions:The new mAbs specifically bind the same or highly overlapping epitopes of a surface antigen that is almost exclusively expressed on fetal erythroid cells. The high specificity of the mAbs should facilitate development of simple methods for reliable isolation of fetal NRBCs and their use in non-invasive prenatal diagnosis of fetal genetic status.  相似文献   
147.
Mutations in leucine-rich repeat kinase-2 (LRRK2) are the most common genetic cause of Parkinson’s disease (PD). The most frequent kinase-enhancing mutation is the G2019S residing in the kinase activation domain. This opens up a promising therapeutic avenue for drug discovery targeting the kinase activity of LRRK2 in PD. Several LRRK2 inhibitors have been reported to date. Here, we report a selective, brain penetrant LRRK2 inhibitor and demonstrate by a competition pulldown assay in vivo target engagement in mice.  相似文献   
148.
In mice cynaropicrin (CYN) potently inhibits the proliferation of Trypanosoma brucei—the causative agent of Human African Trypanosomiasis—by a so far unknown mechanism. We hypothesized that CYNs α,β-unsaturated methylene moieties act as Michael acceptors for glutathione (GSH) and trypanothione (T(SH)2), the main low molecular mass thiols essential for unique redox metabolism of these parasites. The analysis of this putative mechanism and the effects of CYN on enzymes of the T(SH)2 redox metabolism including trypanothione reductase, trypanothione synthetase, glutathione-S-transferase, and ornithine decarboxylase are shown. A two step extraction protocol with subsequent UPLC–MS/MS analysis was established to quantify intra-cellular CYN, T(SH)2, GSH, as well as GS-CYN and T(S-CYN)2 adducts in intact T. b. rhodesiense cells. Within minutes of exposure to CYN, the cellular GSH and T(SH)2 pools were entirely depleted, and the parasites entered an apoptotic stage and died. CYN also showed inhibition of the ornithine decarboxylase similar to the positive control eflornithine. Significant interactions with the other enzymes involved in the T(SH)2 redox metabolism were not observed. Alongside many other biological activities sesquiterpene lactones including CYN have shown antitrypanosomal effects, which have been postulated to be linked to formation of Michael adducts with cellular nucleophiles. Here the interaction of CYN with biological thiols in a cellular system in general, and with trypanosomal T(SH)2 redox metabolism in particular, thus offering a molecular explanation for the antitrypanosomal activity is demonstrated. At the same time, the study provides a novel extraction and analysis protocol for components of the trypanosomal thiol metabolism.  相似文献   
149.
Lipocalin-2 is expressed under pernicious conditions such as intoxication, infection, inflammation and other forms of cellular stress. Experimental liver injury induces rapid and sustained LCN2 production by injured hepatocytes. However, the precise biological function of LCN2 in liver is still unknown. In this study, LCN2?/? mice were exposed to short term application of CCl4, lipopolysaccharide and Concanavalin A, or subjected to bile duct ligation. Subsequent injuries were assessed by liver function analysis, qRT-PCR for chemokine and cytokine expression, liver tissue Western blot, histology and TUNEL assay. Serum LCN2 levels from patients suffering from liver disease were assessed and evaluated. Acute CCl4 intoxication showed increased liver damage in LCN2?/? mice indicated by higher levels of aminotransferases, and increased expression of inflammatory cytokines and chemokines such as IL-1β, IL-6, TNF-α and MCP-1/CCL2, resulting in sustained activation of STAT1, STAT3 and JNK pathways. Hepatocytes of LCN2?/? mice showed lipid droplet accumulation and increased apoptosis. Hepatocyte apoptosis was confirmed in the Concanavalin A and lipopolysaccharide models. In chronic models (4 weeks bile duct ligation or 8 weeks CCl4 application), LCN2?/? mice showed slightly increased fibrosis compared to controls. Interestingly, serum LCN2 levels in diseased human livers were significantly higher compared to controls, but no differences were observed between cirrhotic and non-cirrhotic patients. Upregulation of LCN2 is a reliable indicator of liver damage and has significant hepato-protective effect in acute liver injury. LCN2 levels provide no correlation to the degree of liver fibrosis but show significant positive correlation to inflammation instead.  相似文献   
150.
The endemic occurrence of obesity and the associated risk factors that constitute the metabolic syndrome have been predicted to lead to a dramatic increase in chronic liver disease. Non-alcoholic steatohepatitis (NASH) has become the most frequent liver disease in countries with a high prevalence of obesity. In addition, hepatic steatosis and insulin resistance have been implicated in disease progression of other liver diseases, including chronic viral hepatitis and hepatocellular carcinoma. The molecular mechanisms underlying the link between insulin signaling and hepatocellular injury are only partly understood. We have explored the role of the antiapoptotic caspase-8 homolog cellular FLICE-inhibitory protein (cFLIP) on liver cell survival in a diabetic model with hypoinsulinemic diabetes in order to delineate the role of insulin signaling on hepatocellular survival. cFLIP regulates cellular injury from apoptosis signaling pathways, and loss of cFLIP was previously shown to promote injury from activated TNF and CD95/Apo-1 receptors. In mice lacking cFLIP in hepatocytes (flip−/−), loss of insulin following streptozotocin treatment resulted in caspase- and c-Jun N-terminal kinase (JNK)-dependent liver injury after 21 days. Substitution of insulin, inhibition of JNK using the SP600125 compound in vivo or genetic deletion of the mitogen-activated protein kinase (MAPK)9 (JNK2) in all tissues abolished the injurious effect. Strikingly, the difference in injury between wild-type and cFLIP-deficient mice occurred only in vivo and was accompanied by liver-infiltrating inflammatory cells with a trend toward increased amounts of NK1.1-positive cells and secretion of proinflammatory cytokines. Transfer of bone marrow from rag-1-deficient mice that are depleted from B and T lymphocytes prevented liver injury in flip−/− mice. These findings support a direct role of insulin on cellular survival by alternating the activation of injurious MAPK, caspases and the recruitment of inflammatory cells to the liver. Thus, increasing resistance to insulin signaling pathways in hepatocytes appears to be an important factor in the initiation and progression of chronic liver disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号