首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   10篇
  国内免费   1篇
  2021年   1篇
  2020年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   7篇
  2014年   10篇
  2013年   14篇
  2012年   21篇
  2011年   14篇
  2010年   19篇
  2009年   11篇
  2008年   10篇
  2007年   9篇
  2006年   10篇
  2005年   5篇
  2004年   5篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   9篇
  1997年   3篇
  1996年   3篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   3篇
  1982年   1篇
  1975年   1篇
排序方式: 共有190条查询结果,搜索用时 109 毫秒
51.
The didelphid marsupial, Didelphis aurita, is suggested as an intraguild predator and as key‐species in small mammal assemblages of the Atlantic Forest of Brazil. The field experiments required to test this hypothesis are complex to implement, but the recent revival of regression methods offers a viable alternative. Here we use the dynamic and static regression methods to determine the importance of D. aurita as a competitor and intraguild predator. Capture–recapture data from two localities in the Rio de Janeiro State were used, Garrafão (municipality of Guapimirim), a coastal forest of the Serra do Mar, and Barra de Maricá, a costal sand dune vegetation. Population and microhabitat variables were monitored from April 1997 to April 2003 in Garrafão, and from January 1986 to July 1990 in Barra de Maricá. Microhabitat variables were related to Canopy, Plant, Litter and Rock covers, Obstruction from 0 to 1.5 m, and Number of logs. Exploitation competition was tested by the dynamic method, which models the effects of D. aurita on the per capita growth rate of a species. Interference by predation or competition was tested by the static method, where the abundance of D. aurita at trap stations was regressed against the abundance of other small mammals, after removal of any variation associated with microhabitat factors. Exploitation competition was not detected, but the interference of D. aurita was pervasive, affecting all small mammals studied in the two localities. The clear avoidance of D. aurita by all small mammals tested in two localities of different physiognomies indicates that it functions as an intraguild predator, even if actual predation by D. aurita is an occasional event.  相似文献   
52.
Ca(2+) is an essential and ubiquitous second messenger. Changes in cytosolic Ca(2+) trigger events critical for tumorigenesis, such as cellular motility, proliferation, and apoptosis. We show that an isoform of Secretory Pathway Ca(2+)-ATPase, SPCA2, is upregulated in breast cancer-derived cells and human breast tumors, and suppression of SPCA2 attenuates basal Ca(2+) levels and tumorigenicity. Contrary to its conventional role in Golgi Ca(2+) sequestration, expression of SPCA2 increased Ca(2+) influx by a mechanism dependent on the store-operated Ca(2+) channel Orai1. Unexpectedly, SPCA2-Orai1 signaling was independent of ER Ca(2+) stores or STIM1 and STIM2 sensors and uncoupled from Ca(2+)-ATPase activity of SPCA2. Binding of the SPCA2 amino terminus to Orai1 enabled access of its carboxyl terminus to Orai1 and activation of Ca(2+) influx. Our findings reveal a signaling pathway in which the Orai1-SPCA2 complex elicits constitutive store-independent Ca(2+) signaling that promotes tumorigenesis.  相似文献   
53.
Ergosterol is an important constituent of fungal membranes. Azoles inhibit ergosterol biosynthesis, although the cellular basis for their antifungal activity is not understood. We used multiple approaches to demonstrate a critical requirement for ergosterol in vacuolar H+-ATPase function, which is known to be essential for fungal virulence. Ergosterol biosynthesis mutants of S. cerevisiae failed to acidify the vacuole and exhibited multiple vma phenotypes. Extraction of ergosterol from vacuolar membranes also inactivated V-ATPase without disrupting membrane association of its subdomains. In both S. cerevisiae and the fungal pathogen C. albicans, fluconazole impaired vacuolar acidification, whereas concomitant ergosterol feeding restored V-ATPase function and cell growth. Furthermore, fluconazole exacerbated cytosolic Ca2+ and H+ surges triggered by the antimicrobial agent amiodarone, and impaired Ca2+ sequestration in purified vacuolar vesicles. These findings provide a mechanistic basis for the synergy between azoles and amiodarone observed in vitro. Moreover, we show the clinical potential of this synergy in treatment of systemic fungal infections using a murine model of Candidiasis. In summary, we demonstrate a new regulatory component in fungal V-ATPase function, a novel role for ergosterol in vacuolar ion homeostasis, a plausible cellular mechanism for azole toxicity in fungi, and preliminary in vivo evidence for synergism between two antifungal agents. New insights into the cellular basis of azole toxicity in fungi may broaden therapeutic regimens for patient populations afflicted with systemic fungal infections.  相似文献   
54.
We are currently in an interesting phase of plant biotechnology releases, both for the scientists responsible for these innovations who are beginning to see their ideas realized, and for the biotechnology companies that are starting to see a return on their investment. One of the most notable examples, is the introduction of transgenic crops that are engineered to express a Bacillus thuringiensis toxin that confers resistance to insect predation. However, the picture is not altogether positive - there is concern that the introduction of this technology was premature or should not have happened at all, and that the valuable insecticidal properties of Bacillus thuringiensis will be lost.  相似文献   
55.
PMR1 is the yeast secretory pathway pump responsible for high affinity transport of Mn2+ and Ca2+ into the Golgi, where these ions are sequestered and effectively removed from the cytoplasm. Phenotypic growth assays allow for convenient screening of side chains important for Ca2+ and Mn2+ transport. Earlier we demonstrated that mutant Q783A at the cytoplasmic interface of M6 could transport Ca2+, but not Mn2+. Scanning mutagenesis of side chains proximal to residue Gln-783 in membrane helices M2, M4, M5, and M6 revealed additional residues near the cytoplasmic interface, notably Leu-341 (M5), Phe-738 (M5), and Leu-785 (M6) that are sensitive to substitution. Importantly, we obtained evidence for a packing interaction between Val-335 in M4 and Gln-783 in M6 that is critical for Mn2+ transport. Thus, mutant V335G mimics the Mn2+ transport defect of Q783A and mutant V335I can effectively suppress the Mn2+-defective phenotype of Q783A. These changes in ion selectivity were confirmed by cation-dependent ATP hydrolysis using purified enzyme. Other substitutions at these sites are tolerated individually, but not in combination. Exchange of side chains at 335 and 783 also results in ion selectivity defects, suggesting that the packing interaction may be conformation-sensitive. Homology models of M4, M5, and M6 of PMR1 have been generated, based on the structures of the sarcoplasmic reticulum Ca2+-ATPase. The models are supported by data from mutagenesis and reveal that Gln-783 and Val-335 show conformation-sensitive packing at the cytoplasmic interface. We suggest that this region may constitute a gate for access of Mn2+ ions.  相似文献   
56.
57.
MEN 11300 is a hybrid glycoprotein of 297 amino acids obtained by fusion of the cDNA encoding GM-CSF with the cDNA encoding EPO followed by transfection of the hybrid gene into CHO cells. The oligonucleotide construct incorporated a spacing sequence between the two individual cDNAs which encodes eight amino acids constituting a linker peptide intended to separate the GM-CSF and EPO moieties. The recombinant MEN 11300 protein was submitted to a detailed structural characterization including the verification of the entire amino acid sequence, the assignment of the disulfide bridges pattern, the identification of the glycosylation sites and the definition of the glycosidic moiety, including site-specificity. Partial processing of the C-terminal Arg residue and the occurrence of N-glycosylation sites at Asn27, Asn155, Asn169, Asn214 were established. Moreover, O-glycosylation at Ser257 and at the N-terminal region was also detected. A large heterogeneity was observed in the N-glycans due to the presence of differently sialylated and fucosylated branched complex type oligosaccharides whereas O-linked glycans were constituted by GalGalNAc chains with a different number of sialic acids. The disulfide bridges pattern was established by direct FABMS analysis of the proteolytic digests or by ESMS analysis of HPLC purified fractions. Pairing of the eight cysteine residues resulted in Cys54-Cys96, Cys88-Cys121, Cys138-Cys292, and Cys160-Cys164. This S-S bridges pattern is identical to that occurring in the individual natural GM-CSF and EPO, thus showing that the two protein moieties in MEN 11300 can independently acquire their native three-dimensional structure.   相似文献   
58.
Unusual pattern of bacterial ice nucleation gene evolution   总被引:5,自引:0,他引:5  
Bacterial ice nucleation activity (INA+ phenotype) can be traced to the product of a single gene, ina. A remarkably sparse distribution of this phenotype within three bacterial genera indicates that the ina gene may have followed an unusual evolutionary path. Southern blot analyses, coupled with assays for ice-nucleating ability, revealed that within four bacterial species an ina gene is present in some strains but absent from others. Results of hybridization experiments using DNA fragments that flank the ina gene suggested that the genotypic dimorphism of ina may be anomalous. A phylogenetic analysis of 16S ribosomal RNA gene sequences from a total of 14 ina+ and ina- bacterial strains indicated that the ina+ bacteria are not monophyletic but instead phylogenetically interspersed among ina- bacteria. The relationships of ina+ bacteria inferred from ina sequence did not coincide with those inferred from the 16S data. These results suggest the possibility of horizontal transfer in the evolution of bacterial ina genes.   相似文献   
59.
The relationship between endosomal pH and function is well documented in viral entry, endosomal maturation, receptor recycling, and vesicle targeting within the endocytic pathway. However, specific molecular mechanisms that either sense or regulate luminal pH to mediate these processes have not been identified. Herein we describe the use of novel, compartment-specific pH indicators to demonstrate that yeast Nhx1, an endosomal member of the ubiquitous NHE family of Na+/H+ exchangers, regulates luminal and cytoplasmic pH to control vesicle trafficking out of the endosome. Loss of Nhx1 confers growth sensitivity to low pH stress, and concomitant acidification and trafficking defects, which can be alleviated by weak bases. Conversely, weak acids cause wild-type yeast to present nhx1Delta trafficking phenotypes. Finally, we report that Nhx1 transports K+ in addition to Na+, suggesting that a single mechanism may responsible for both pH and K+-dependent endosomal processes. This presents the newly defined family of eukaryotic endosomal NHE as novel targets for pharmacological inhibition to alleviate pathological states associated with organellar alkalinization.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号