全文获取类型
收费全文 | 98篇 |
免费 | 6篇 |
国内免费 | 1篇 |
专业分类
105篇 |
出版年
2021年 | 3篇 |
2020年 | 1篇 |
2018年 | 2篇 |
2015年 | 5篇 |
2014年 | 5篇 |
2013年 | 7篇 |
2012年 | 9篇 |
2011年 | 5篇 |
2010年 | 9篇 |
2009年 | 10篇 |
2008年 | 2篇 |
2007年 | 3篇 |
2006年 | 4篇 |
2004年 | 3篇 |
2003年 | 2篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1998年 | 9篇 |
1997年 | 3篇 |
1996年 | 3篇 |
1994年 | 3篇 |
1993年 | 1篇 |
1991年 | 1篇 |
1988年 | 2篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1983年 | 3篇 |
1982年 | 1篇 |
1975年 | 1篇 |
排序方式: 共有105条查询结果,搜索用时 15 毫秒
81.
Multidimensional heteronuclear NMR studies have been applied to the
resonance assignment and conformational analysis of 13C-enriched
Neu5Acalpha2-3Galbeta1-4Glc. It is demonstrated that three-dimensional
ROESY-HSQC experiments provide through-space distance restraints which
cannot be observed with conventional homonuclear 1H techniques due to
resonance overlap. In particular, connectivities demonstrating the
existence of the "anti" conformation about the Galbeta1-4Glc glycosidic
linkage are unambiguously observed. It is shown that 13C isotopic
enrichment of the trisaccharide at a level >95% enables straightforward
measurement of trans-glycosidic 1H-13C and 13C-13C coupling constants and a
Karplus-type relation is derived for the latter. In total 15 conformational
restraints were obtained for the trisaccharide in aqueous solution, all of
which were in excellent agreement with theoretical parameters computed from
a 5 ns molecular dynamics simulation of the glycan.
相似文献
82.
83.
The replicative helicase MCM recruits cohesin acetyltransferase ESCO2 to mediate centromeric sister chromatid cohesion 下载免费PDF全文
Miroslav P Ivanov Rene Ladurner Ina Poser Rebecca Beveridge Evelyn Rampler Otto Hudecz Maria Novatchkova Jean‐Karim Hériché Gordana Wutz Petra van der Lelij Emanuel Kreidl James RA Hutchins Heinz Axelsson‐Ekker Jan Ellenberg Anthony A Hyman Karl Mechtler Jan‐Michael Peters 《The EMBO journal》2018,37(15)
Chromosome segregation depends on sister chromatid cohesion which is established by cohesin during DNA replication. Cohesive cohesin complexes become acetylated to prevent their precocious release by WAPL before cells have reached mitosis. To obtain insight into how DNA replication, cohesion establishment and cohesin acetylation are coordinated, we analysed the interaction partners of 55 human proteins implicated in these processes by mass spectrometry. This proteomic screen revealed that on chromatin the cohesin acetyltransferase ESCO2 associates with the MCM2‐7 subcomplex of the replicative Cdc45‐MCM‐GINS helicase. The analysis of ESCO2 mutants defective in MCM binding indicates that these interactions are required for proper recruitment of ESCO2 to chromatin, cohesin acetylation during DNA replication, and centromeric cohesion. We propose that MCM binding enables ESCO2 to travel with replisomes to acetylate cohesive cohesin complexes in the vicinity of replication forks so that these complexes can be protected from precocious release by WAPL. Our results also indicate that ESCO1 and ESCO2 have distinct functions in maintaining cohesion between chromosome arms and centromeres, respectively. 相似文献
84.
SEBASTIÁN APESTEGUÍA RAÚL O. GÓMEZ GUILLERMO W. ROUGIER 《Zoological Journal of the Linnean Society》2012,166(2):342-360
Herein we describe a new rhynchocephalian taxon from the Middle Jurassic of Patagonia, Argentina, representing the first Jurassic record of the group in South America. The new taxon, consisting of a complete dentary, is ascribed to Sphenodontia based on the presence of a deep and wide Meckelian groove, long posterior process, well‐developed coronoid process, and acrodont teeth showing dental regionalization including successional, alternate hatchling, and additional series. This allocation is reinforced by a phylogenetic analysis that places the new taxon in a basal position within a clade of sphenodontians that excludes Diphydontosaurus and Planocephalosaurus. Additionally, the new taxon clusters within a Gondwanan clade with the Indian Godavarisaurus from the Jurassic Kota Formation, sharing the presence of recurved and relatively large posterior successional teeth that are ribbed and bear a peculiar anterolingual groove. This sister‐group relationship is intriguing from a palaeobiogeographical viewpoint, as it suggests some degree of endemism during the initial stages of the breakup of Pangaea. We also discuss the ontogenetic stage of the new taxon and provide insights on the evolution of successional dentition in rhynchocephalians. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 342–360. 相似文献
85.
JOSÉ MIGUEL APARICIO ALBERTO MUÑOZ RAÚL BONAL ANDERS PAPE MØLLER 《Biological journal of the Linnean Society. Linnean Society of London》2012,105(4):925-936
Many organisms show well‐defined latitudinal clines in morphology, which appear to be caused by spatially varying natural selection, resulting in different optimal phenotypes in each location. Such spatial variability raises an interesting question, with different prospects for the action of sexual selection on characters that have a dual purpose, such as locomotion and sexual attraction. The outermost tail feathers of barn swallows (Hirundo rustica) represent one such character, and their evolution has been a classic model subject to intense debate. In the present study, we examined individuals from four European populations to analyze geographical variation in the length and mass of tail feathers in relation to body size and wing size. Tail feather length differed between sexes and populations, and such variation was a result of the effects of natural selection, acting through differences in body size and wing size, as well as the effects of sexual selection that favours longer tails. The extra enlargement of the tail promoted by sexual selection (i.e. beyond the natural selection optimum) could be achieved by increasing investment in ornaments, and by modifying feather structure to produce longer feathers of lower density. These two separate processes accounting for the production of longer and more costly tail feathers and less dense feathers, respectively, are consistent with the hypothesis that both Zahavian and Fisherian mechanisms may be involved in the evolution of the long tails of male barn swallows. We hypothesize that the strength of sexual selection increases with latitude because of the need for rapid mating as a result of the short duration of the breeding season at high latitudes. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 925–936. 相似文献
86.
87.
Partial 18S rRNA sequences of five chelicerate arthropods plus a
crustacean, myriapod, insect, chordate, echinoderm, annelid, and
platyhelminth were compared. The sequence data were used to infer phylogeny
by using a maximum-parsimony method, an evolutionary-distance method, and
the evolutionary-parsimony method. The phylogenetic inferences generated by
maximum-parsimony and distance methods support both monophyly of the
Arthropoda and monophyly of the Chelicerata within the Arthropoda. These
results are congruent with phylogenies based on rigorous cladistic analyses
of morphological characters. Results support the inclusion of the
Arthropoda within a spiralian or protostome coelomate clade that is the
sister group of a deuterostome clade, refuting the hypothesis that the
arthropods represent the "primitive" sister group of a protostome coelomate
clade. Bootstrap analyses and consideration of all trees within 1% of the
length of the most parsimonious tree suggest that relationships between the
nonchelicerate arthropods and relationships within the chelicerate clade
cannot be reliably inferred with the partial 18S rRNA sequence data. With
the evolutionary-parsimony method, support for monophyly of the Arthropoda
is found in the majority of the combinations analyzed if the coelomates are
used as "outgroups." Monophyly of the Chelicerata is supported in most
combinations assessed. Our analyses also indicate that the
evolutionary-parsimony method, like distance and parsimony, may be biased
by taxa with long branches. We suggest that a previous study's inference of
the Arthropoda as paraphyletic may be the result of (a) having two few
arthropod taxa available for analysis and (b) including long-branched taxa.
相似文献
88.
Adriana Rodríguez-Marí Cristian Ca?estro Ruth A. BreMiller Alexandria Nguyen-Johnson Kazuhide Asakawa Koichi Kawakami John H. Postlethwait 《PLoS genetics》2010,6(7)
The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53) mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA–repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination. 相似文献
89.
Degradation of extracellular matrix by mouse trophoblast outgrowths: a model for implantation 总被引:1,自引:6,他引:1 下载免费PDF全文
During implantation the embryo attaches to the endometrial surface and trophoblast traverses the uterine epithelium, anchoring in the uterine connective tissue. To determine whether trophoblast can facilitate invasion of the uterus by degrading components of normal uterine extracellular matrix, mouse blastocysts were cultured on a radio-labeled extracellular matrix that contained glycoproteins, elastin, and collagen. The embryos attached to the matrix, and trophoblast spread over the surface. Starting on day 5 of culture there was a release of labeled peptides into the medium. The radioactive peptides released from the matrix by the embryos had molecular weights ranging from more than 25,000 to more than 200. By day 7 there were areas where individual trophoblast cells had separated from one another, revealing the underlying substratum that was cleared of matrix. When trophoblast cells were lysed with NH(4)OH on day 8, it was apparent that the area underneath the trophoblast outgrowth had been cleared of matrix. Scanning electron microscopy and time-lapse cinemicrography confirmed that the digestion of matrix was highly localized, taking place only underneath the trophoblast, with no evidence of digestion of the matrix beyond the periphery of the trophoblast outgrowth. The sharp boundaries of degredation observed may be due to localized proteinase secretion by trophoblast, to membrane proteinases on the surface of trophoblast, or to endocytosis. Digestion of the matrix was not dependent on plasminogen, thus ruling out a role for plasminogen activator. Digestion was not inhibited by a variety of hormones and inhibitors, including progesterone, 17β-estradiol, leupeptin, EDTA, colchicine, NH(4)Cl, or ε-aminocaproic acid. This system of culturing embryos on extracellular matrix may be useful in determining the processes that regulate trophoblast migration and invasion into the maternal tissues during implantation.0 相似文献
90.