首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   375篇
  免费   68篇
  国内免费   1篇
  2021年   4篇
  2020年   2篇
  2019年   5篇
  2018年   5篇
  2017年   6篇
  2016年   5篇
  2015年   13篇
  2014年   24篇
  2013年   20篇
  2012年   18篇
  2011年   20篇
  2010年   15篇
  2009年   21篇
  2008年   14篇
  2007年   19篇
  2006年   20篇
  2005年   13篇
  2004年   14篇
  2003年   8篇
  2002年   6篇
  2001年   9篇
  2000年   7篇
  1999年   10篇
  1998年   14篇
  1997年   11篇
  1996年   6篇
  1995年   3篇
  1994年   10篇
  1993年   5篇
  1992年   15篇
  1991年   12篇
  1990年   7篇
  1989年   9篇
  1988年   5篇
  1987年   4篇
  1986年   5篇
  1985年   11篇
  1984年   5篇
  1983年   4篇
  1982年   6篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   5篇
  1974年   4篇
  1971年   3篇
  1969年   2篇
排序方式: 共有444条查询结果,搜索用时 125 毫秒
381.
Mou F  Wills EG  Park R  Baines JD 《Journal of virology》2008,82(16):8094-8104
Previous results indicated that the U(L)34 protein (pU(L)34) of herpes simplex virus 1 (HSV-1) is targeted to the nuclear membrane and is essential for nuclear egress of nucleocapsids. The normal localization of pU(L)34 and virions requires the U(S)3-encoded kinase that phosphorylates U(L)34 and lamin A/C. Moreover, pU(L)34 was shown to interact with lamin A in vitro. In the present study, glutathione S-transferase/pU(L)34 was shown to specifically pull down lamin A and lamin B1 from cellular lysates. To determine the role of these interactions on viral infectivity and pU(L)34 targeting to the inner nuclear membrane (INM), the localization of pU(L)34 was determined in LmnA(-/-) and LmnB1(-/-) mouse embryonic fibroblasts (MEFs) by indirect immunofluorescence and immunogold electron microscopy in the presence or absence of U(S)3 kinase activity. While pU(L)34 INM targeting was not affected by the absence of lamin B1 in MEFs infected with wild-type HSV as viewed by indirect immunofluorescence, it localized in densely staining scalloped-shaped distortions of the nuclear membrane in lamin B1 knockout cells infected with a U(S)3 kinase-dead virus. Lamin B1 knockout cells were relatively less permissive for viral replication than wild-type MEFs, with viral titers decreased at least 10-fold. The absence of lamin A (i) caused clustering of pU(L)34 in the nuclear rim of cells infected with wild-type virus, (ii) produced extensions of the INM bearing pU(L)34 protein in cells infected with a U(S)3 kinase-dead mutant, (iii) precluded accumulation of virions in the perinuclear space of cells infected with this mutant, and (iv) partially restored replication of this virus. The latter observation suggests that lamin A normally impedes viral infectivity and that U(S)3 kinase activity partially alleviates this impediment. On the other hand, lamin B1 is necessary for optimal viral replication, probably through its well-documented effects on many cellular pathways. Finally, neither lamin A nor B1 was absolutely required for targeting pU(L)34 to the INM, suggesting that this targeting is mediated by redundant functions or can be mediated by other proteins.  相似文献   
382.
The paper reviews the evidence for apparent sodium-dependent copper (Cu) uptake across epithelia such as frog skin, fish gills and vertebrate intestine. Potential interactions between Na(+) and Cu during transfer through epithelial cells is rationalized into the major steps of solute transfer: (i) adsorption on to the apical/mucosal membrane, (ii) import in to the cell (iii) intracellular trafficking, and (iv) export from the cell to the blood. Interactions between Na(+) and Cu transport are most likely during steps (i) and (ii). These ions have similar mobilities (lambda) in solution (lambda, Na(+), 50.1; Cu(2+), 53.6 cm(2) Int. ohms(-1) equiv(-1)); consequently, Cu(2+) may compete equally with Na(+) for diffusion to membrane surfaces. We present new data on the Na(+) binding characteristics of the gill surface (gill microenvironment) of rainbow trout. The binding characteristics of Na(+) and Cu(2+) to the external surface of trout gills are similar with saturation of ligands at nanomolar concentrations of solutes. At the mucosal/apical membrane of several epithelia (fish gills, frog skin, vertebrate intestine), there is evidence for both a Cu-specific channel (CTR1 homologues) and Cu leak through epithelial Na(+) channels (ENaC). Cu(2+) slows the amiloride-sensitive short circuit current (I(sc)) in frog skin, suggesting Cu(2+) binding to the amiloride-binding site of ENaC. We present examples of data from the isolated perfused catfish intestine showing that Cu uptake across the whole intestine was reduced by 50% in the presence of 2 mM luminal amiloride, with 75% of the overall inhibition attributed to an amiloride-sensitive region in the middle intestine. Removal of luminal Na(+) produced more variable results, but also reduced Cu uptake in catfish intestine. These data together support Cu(2+) modulation of ENaC, but not competitive entry of Cu(2+) through ENaC. However, in situations where external Na(+) is only a few millimoles (fish gills, frogs in freshwater), Cu(2+) leak through ENaC is possible. CTR1 is a likely route of Cu(2+) entry when external Na(+) is higher (e.g. intestinal epithelia). Interactions between Na(+) and Cu ions during intracellular trafficking or export from the cell are unlikely. However, effects of intracellular chloride on the Cu-ATPase or ENaC indicate that Na(+) might indirectly alter Cu flux. Conversely, Cu ions inhibit basolateral Na(+)K(+)-ATPase and may increase [Na(+)](i).  相似文献   
383.
Previous studies have indicated that the U(L)6, U(L)15, U(L)17, U(L)28, U(L)32, and U(L)33 genes are required for the cleavage and packaging of herpes simplex viral DNA. To identify proteins that interact with the U(L)28-encoded DNA binding protein of herpes simplex virus type 1 (HSV-1), a previously undescribed rabbit polyclonal antibody directed against the U(L)28 protein fused to glutathione S-transferase was used to immunopurify U(L)28 and the proteins with which it associated. It was found that the antibody specifically coimmunoprecipitated proteins encoded by the genes U(L)28, U(L)15, and U(L)33 from lysates of both HEp-2 cells infected with HSV-1(F) and insect cells infected with recombinant baculoviruses expressing these three proteins. In reciprocal reactions, antibodies directed against the U(L)15- or U(L)33-encoded proteins also coimmunoprecipitated the U(L)28 protein. The coimmunoprecipitation of the three proteins from HSV-infected cells confirms earlier reports of an association between the U(L)28 and U(L)15 proteins and represents the first evidence of the involvement of the U(L)33 protein in this complex.  相似文献   
384.
Genetic malleability and amenability to behavioral assays make Drosophila an attractive model for dissecting the molecular mechanisms of complex behaviors, such as learning and memory. At a cellular level, Drosophila has contributed a wealth of information on the mechanisms regulating membrane excitability and synapse formation, function, and plasticity. Until recently, however, these studies have relied almost exclusively on analyses of the peripheral neuromuscular junction, with a smaller body of work on neurons grown in primary culture. These experimental systems are, by themselves, clearly inadequate for assessing neuronal function at the many levels necessary for an understanding of behavioral regulation. The pressing need is for access to physiologically relevant neuronal circuits as they develop and are modified throughout life. In the past few years, progress has been made in developing experimental approaches to examine functional properties of identified populations of Drosophila central neurons, both in cell culture and in vivo. This review focuses on these exciting developments, which promise to rapidly expand the frontiers of functional cellular neurobiology studies in Drosophila. We discuss here the technical advances that have begun to reveal the excitability and synaptic transmission properties of central neurons in flies, and discuss how these studies promise to substantially increase our understanding of neuronal mechanisms underlying behavioral plasticity.  相似文献   
385.
gamma-tubulin is an essential part of a multiprotein complex that nucleates the minus end of microtubules. Although the function of gamma-tubulin in nucleating cytoplasmic and mitotic microtubules from organizing centers such as the centrosome and spindle pole body is well documented, its role in microtubule nucleation in the eukaryotic flagellum is unclear. Here, we have used Trypanosoma brucei to investigate possible functions of gamma-tubulin in the formation of the 9 + 2 flagellum axoneme. T. brucei possesses a single flagellum and forms a new flagellum during each cell cycle. We have used an inducible RNA interference (RNAi) approach to ablate expression of gamma-tubulin, and, after induction, we observe that the new flagellum is still formed but is paralyzed, while the old flagellum is unaffected. Electron microscopy reveals that the paralyzed flagellum lacks central pair microtubules but that the outer doublet microtubules are formed correctly. These differences in microtubule nucleation mechanisms during flagellum growth provide insights into spatial and temporal regulation of gamma-tubulin-dependent processes within cells and explanations for the organization and evolution of axonemal structures such as the 9 + 0 axonemes of sensory cells and primary cilia.  相似文献   
386.
Ankyrins are versatile adaptor proteins that join the spectrin-based cytoskeleton to transmembrane proteins, and have roles in organizing the microstructure of cell membranes. Molecular diversity of ankyrins in mammals arises from extensive alternative splicing of the products of three genes. There has been no systematic analysis of the diversity of expression of ankyrins-G, the widely expressed Ank3 gene products, in a complex tissue. We previously described Ank(G107), the first muscle-specific ankyrin-G. Here, we combined cDNA and database analyses to gain novel insight into the ankyrins-G of skeletal muscle. We find: (i) that Ank3 is composed of at least 53 exons, many of which are subject to tissue-specific splicing; (ii) five novel full-length cDNAs encoding two canonical (Ank(G197), Ank(G217)) and three small isoforms (Ank(G109), Ank(G128), Ank(G130)) bring to six the number of ankyrins-G expressed in skeletal muscle; (iii) a 76-residue insert in the C-terminal domain is a 'signature' for muscle ankyrins; (iv) variably spliced sequences of 17/18 and 195 residues increase diversity in the C-terminal domains. Comparison of endogenous ankyrins-G with in vitro translated cDNAs revealed that small ankyrins account for the majority of the immunoreactivity for ankyrin-G in soleus muscle. The small ankyrins, when expressed in vivo in the rat muscle, are all targeted to sarcolemmal costameres. Our results demonstrate the tissue-dependent alternative splicing of Ank3 in skeletal muscle and point to novel functions of small ankyrins-G in organizing microdomains of the plasma membrane.  相似文献   
387.
Baines JF  Parsch J  Stephan W 《Genetics》2004,166(1):237-242
Recent advances in experimental analyses of the evolution of RNA secondary structures suggest a more complex scenario than that typically considered by Kimura's classical model of compensatory evolution. In this study, we examine one such case in more detail. Previous experimental analysis of long-range compensatory interactions between the two ends of Drosophila Adh mRNA failed to fit the classical model of compensatory evolution. To further investigate and verify long-range pairing in Drosophila Adh with respect to models of compensatory evolution and its potential functional role, we introduced site-directed mutations in the Drosophila melanogaster Adh gene. We explore two alternative hypotheses for why previous analysis of long-range compensatory interactions failed to fit the classical model. Specifically, we investigate whether the disruption of a conserved short-range pairing within Adh exon 2 has an effect on Adh expression or if there is a dual functional role of a conserved sequence in the 3'-UTR in both long-range pairing and the negative regulation of Adh expression. We find that a classical result was not observed due to the pleiotropic effect of changing a nucleotide involved in both long-range base pairing and the negative regulation of gene expression.  相似文献   
388.
The soils of the Pampas are thought to be generally non-contaminated but there is growing evidence of trace element accumulation at some specific sites. The goal of this study was to measure the current levels of the main Potentially Toxic Elements (PTE) in the top horizon and in specific soil profiles so that we would establish the baseline concentrations of these elements. Eighty-eight top soils and three soil profiles were sampled. The samples were acid digested. Arsenic, boron, barium, cadmium, cobalt, chromium, copper, lead, manganese, mercury, molybdenum, nickel, silver, selenium and zinc were determined with inductively coupled argon plasma emission spectrometry (ICPES).

All of the values found are within the normal range for uncontaminated soils as reported from several continents. Elements with high environmental risk potential are lower than the admissible range of the European Union and some of them are orders of magnitude lower than those of the United States Environmental Protection Agency (US-EPA) 501 levels. Potentially Toxic Elements contents increased with depth or showed a maximum concentration at the B2 horizon. This is related to the parent material and the pedogenetic processes but not to recent contamination. Soil profiles showed higher concentrations of PTE in clayey horizons. However, these relationships did not appear in top soil samples in any soil Great Group studied. The shown data establishes a baseline for PTE concentrations for Pampas soils.  相似文献   

389.
Herpes simplex virus type 1 (HSV-1) gene UL14 is located between divergently transcribed genes UL13 and UL15 and overlaps the promoters for both of these genes. UL14 also exhibits a substantial overlap of its coding region with that of UL13. It is one of the few HSV-1 genes for which a phenotype and protein product have not been described. Using mass spectrometric and immunological approaches, we demonstrated that the UL14 protein is a minor component of the virion tegument of 32 kDa which is expressed late in infection. In infected cells, the UL14 protein was detected in the nucleus at discrete sites within electron-dense nuclear bodies and in the cytoplasm initially in a diffuse distribution and then at discrete sites. Some of the UL14 protein was phosphorylated. A mutant with a 4-bp deletion in the central region of UL14 failed to produce the UL14 protein and generated small plaques. The mutant exhibited an extended growth cycle at low multiplicity of infection and appeared to be compromised in efficient transit of virus particles from the infected cell. In mice injected intracranially, the 50% lethal dose of the mutant was reduced more than 30,000-fold. Recovery of the mutant from the latently infected sacral ganglia of mice injected peripherally was significantly less than that of wild-type virus, suggesting a marked defect in the establishment of, or reactivation from, latent infection.  相似文献   
390.
As the voltage-dependent anion channel (VDAC) forms the interface between mitochondria and the cytosol, its importance in metabolism is well understood. However, research on VDAC's role in cell death is a rapidly growing field, unfortunately with much confusing and contradictory results. The fact that VDAC plays a role in outer mitochondrial membrane permeabilization is undeniable, however, the mechanisms behind this remain very poorly understood. In this review, we will summarize the studies that show evidence of VDAC playing a role in cell death. To begin, we will discuss the evidence for and against VDAC's involvement in mitochondrial permeability transition (MPT) and attempt to clarify that VDAC is not an essential component of the MPT pore (MPTP). Next, we will evaluate the remaining literature on VDAC in cell death which can be divided into three models: proapoptotic agents escaping through VDAC, VDAC homo- or hetero-oligomerization, or VDAC closure resulting in outer mitochondrial membrane permeabilization through an unknown pathway. We will then discuss the growing list of modulators of VDAC activity that have been associated with induction/protection against cell death. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号