首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278998篇
  免费   19124篇
  国内免费   1422篇
  299544篇
  2019年   143篇
  2016年   122篇
  2014年   136篇
  2012年   31368篇
  2011年   34781篇
  2010年   5006篇
  2009年   2513篇
  2008年   26214篇
  2007年   26898篇
  2006年   25310篇
  2005年   23737篇
  2004年   22365篇
  2003年   20749篇
  2002年   17757篇
  2001年   14089篇
  2000年   17939篇
  1999年   7063篇
  1998年   919篇
  1997年   605篇
  1996年   414篇
  1995年   438篇
  1994年   401篇
  1993年   397篇
  1992年   437篇
  1991年   381篇
  1990年   390篇
  1989年   405篇
  1988年   397篇
  1987年   330篇
  1986年   294篇
  1985年   291篇
  1984年   219篇
  1983年   319篇
  1982年   217篇
  1981年   174篇
  1972年   153篇
  1971年   160篇
  1970年   127篇
  1959年   776篇
  1958年   1464篇
  1957年   1552篇
  1956年   1396篇
  1955年   1433篇
  1954年   1382篇
  1953年   1312篇
  1952年   1212篇
  1951年   991篇
  1950年   942篇
  1949年   317篇
  1948年   274篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
In this article, a two-phase system for the digestion of wastes with a high solid content is simulated. The solids are charged to the hydrolyzer and then leachate recirculation is activated until biodegradation is nearly complete. Several parameters are tested, namely moisture, leachate recirculation flow rate, and hydrolyzer-methanizer volume ratio. The results show that recirculation rate is an important parameter subject to optimization, with optimal values corresponding to hydrolyzer hydraulic retention times below 1 day. The quantity of recirculating water must be the highest possible. As a consequence, the organic load to the methanizer is reduced, making thus possible the use of a smaller methanizer volume.  相似文献   
102.
Batch ethanol fermentation by cells of Zymomomas mobilis ATCC 29191, ionically adsorbed on a DEAE-cellulose ion exchanger, was investigated in a stirred fermentor. Adsorption isotherms in different media were determined and used to interpret the effects of the environment on cell immobilization. Other factors affecting cell immobilization during an actual fermentation were studied. Mechanical agitation was found to cause detachment of cells from the ion exchange particles. The results suggest that the amount of cells adsorbed during a fermentation process is different from that found from adsorption isotherm data. Consequently, application of equilibrium adsorption data to actual fermentations should be done with caution.  相似文献   
103.
Continuous production of L-phenylalanine by transamination   总被引:2,自引:0,他引:2  
L-Phenylalanine was produced continuously from L-as-partate and phenylpyruvate by transaminase from a newly screened Pseudomonas putida strain. The process was carried out with an isolated enzyme in homogeneous phase in an enzyme membrane reactor and with immobilized whole cells in a stirred tank reactor, respectively. Due to the difference in transport resistance, the productivity of the free enzyme in homogeneous phase (72 mmol/L h) was about 3 times higher than the productivity achieved using immobilized cells. However, a better stability of the biocatalyst was observed with immobilized cells.  相似文献   
104.
105.
Two isozymes of dihydroxyacetone phosphate reductase in dunaliella   总被引:1,自引:0,他引:1       下载免费PDF全文
Two isoforms of dihydroxyacetone phosphate reductase were present in Dunaliella tertiolecta. The major form was located in the chloroplast and the minor form in the cytosol. The chloroplastic reductase eluted first from a DEAE cellulose column followed immediately by the cytosolic form. Both forms were unstable and cold labile. Addition of 5 millimolar dithiothreitol helped to stabilize the enzymes. The cytosolic isoform of DHAP reductase was detected only if the cells were in an active log phase of growth. Then its activity was 20 to 30% of the total reductase activity. When cell cultures entered late log phase of growth the activity of the cytosolic form of the enzyme disappeared, but the chloroplastic form remained. The cytosolic DHAP reductase from Dunaliella has some properties similar to the cytosolic isoform from spinach leaves. Detergents inhibited both enzymes. However, neither form of the algal dihydroxyacetone phosphate reductase was stimulated by fructose 2,6-bisphosphate. In Dunaliella the properties of the chloroplastic form were those expected for glycerol production for osmoregulation, whereas the cytosolic form, like the reductases in leaves, is more likely involved in glycerol phosphate formation for lipid synthesis.  相似文献   
106.
We report the use of Ni2+ and Co2+ on free-hand sections of soybean (Glycine max L.) and Bidens sp to localize polygalacturonates. In soybean only the hourglass cells of the seedcoat stain intensely. In the pod the epidermis of the outer pod wall and a few layers of subepidermal cells stain lightly, while that part of the funiculus adjacent to the seedcoat palisade epidermal cells stains heavily and the neck of the funiculus close to the pod also stains. In Bidens stem sections, the walls of the collenchyma stain most intensely.  相似文献   
107.
A new hydroxycinnamoyl-CoA:putrescine hydroxycinnamoyltransferase (PHT) was detected in two variant lines of Nicotiana tabacum L. (TX1, TX4) accumulating markedly different levels of caffeoylputrescine. The enzyme accepted only the aliphatic diamines putrescine, cadaverine and 1,3-diaminopropane at a ratio of 100:33:8. Caffeoyl- and feruloyl-CoAs were the best acyl donors. The apparent Km-values for caffeoyl-CoA and putrescine were near 3 and 10 micromolar, respectively, at the pH-optimum of 10.0. PHT activity was quite similar in low producing TX1 and high producing TX4 cells, while some other biosynthetic enzymes (phenylalanine ammonia-lyase, ornithine decarboxylase) were greatly enhanced in TX4 cells, suggesting that PHT does not catalyze the rate-limiting step in hydroxycinnamoylputrescine formation.  相似文献   
108.
We investigated the effect of growth light intensity on the photosynthetic apparatus of pea (Pisum sativum) thylakoid membranes. Plants were grown either in a growth chamber at light intensities that ranged from 8 to 1050 microeinsteins per square meter per second, or outside under natural sunlight. In thylakoid membranes we determined: the amounts of active and inactive photosystem II, photosystem I, cytochrome b/f, and high potential cytochrome b559, the rate of uncoupled electron transport, and the ratio of chlorophyll a to b. In leaves we determined: the amounts of the photosynthetic components per leaf area, the fresh weight per leaf area, the rate of electron transport, and the light compensation point. To minimize factors other than growth light intensity that may alter the photosynthetic apparatus, we focused on peas grown above the light compensation point (20-40 microeinsteins per square meter per second), and harvested only the unshaded leaves at the top of the plant. The maximum difference in the concentrations of the photosynthetic components was about 30% in thylakoids isolated from plants grown over a 10-fold range in light intensity, 100 to 1050 microeinsteins per square meter per second. Plants grown under natural sunlight were virtually indistinguishable from plants grown in growth chambers at the higher light intensities. On a leaf area basis, over the same growth light regime, the maximum difference in the concentration of the photosynthetic components was also about 30%. For peas grown at 1050 microeinsteins per square meter per second we found the concentrations of active photosystem II, photosystem I, and cytochrome b/f were about 2.1 millimoles per mol chlorophyll. There were an additional 20 to 33% of photosystem II complexes that were inactive. Over 90% of the heme-containing cytochrome f detected in the thylakoid membranes was active in linear electron transport. Based on these data, we do not find convincing evidence that the stoichiometries of the electron transport components in the thylakoid membrane, the size of the light-harvesting system serving the reaction centers, or the concentration of the photosynthetic components per leaf area, are regulated in response to different growth light intensities. The concept that emerges from this work is of a relatively fixed photosynthetic apparatus in thylakoid membranes of peas grown above the light compensation point.  相似文献   
109.
The nitrodiphenyl ether herbicide 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitroacetophenone oxime-o-(acetic acid, methyl ester) (DPEI) induces light- and O2-dependent lipid peroxidation and chlorophyll (Chl) bleaching in the green alga Scenedesmus obliquus. Under conditions of O2-limitation, these effects are diminished by prometyne and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), both inhibitors of photosynthetic electron transport. Mutants in which photosynthetic electron transport is blocked are also resistant to DPEI under conditions of O2-limitation. Light- and O2-dependent lipid peroxidation and Chl bleaching are also induced by 5-[2-chloro-4-(trifluoromethyl)phenoxy]-3-methoxyphthalide (DPEII), a diphenyl ether whose redox properties preclude reduction by photosystem I. However, these effects of DPEII are also inhibited by DCMU. Under conditions of high aeration, DCMU does not protect Scenedesmus cells from Chl bleaching induced by DPEI, but does protect against paraquat. DPEI, but not paraquat, induces tetrapyrrole formation in treated cells in the dark. This is also observed in a mutant lacking photosystem I but is suppressed under conditions likely to lead to O2 limitation. Our results indicate that, in contrast to paraquat, the role of photosynthetic electron transport in diphenyl ether toxicity in Scenedesmus is not to reduce the herbicide to a radical species which initiates lipid peroxidation. Its role is probably to maintain a sufficiently high O2 concentration, through water-splitting, in the algal suspension.  相似文献   
110.
Chenopods synthesize betaine in the chloroplast via a two-step oxidation of choline: choline → betaine aldehyde → betaine. Our previous experiments with intact chloroplasts, and in vivo18O2 labeling studies, led us to propose that the first step is mediated by a monooxygenase which uses photosynthetically generated reducing power (C Lerma, AD Hanson, D Rhodes [1988] Plant Physiol 88: 695-702). Here, we report the detection of such an activity in vitro. In the presence of O2 and reduced ferredoxin, the stromal fraction from spinach (Spinacia oleracea) chloroplasts converted choline to betaine aldehyde at rates similar to those in intact chloroplasts (20-50 nanomoles per hour per milligram protein). Incorporation of 18O from 18O2 by the in vitro reaction was demonstrated by fast atom bombardment mass spectrometry. Ferredoxin could be reduced either with thylakoids in the light, or with NADPH plus ferredoxin-NADP reductase in darkness; NADPH alone could not substitute for ferredoxin. No choline-oxidizing activity was detected in the stromal fraction of pea (Pisum sativum L.), a species that does not accumulate betaine. The spinach choline-oxidizing enzyme was stimulated by 10 millimolar Mg2+, had a pH optimum close to 8, and was insensitive to carbon monoxide. The specific activity was increased threefold in plants growing in 200 millimolar NaCl. Gel filtration experiments gave a molecular weight of 98 kilodaltons for the choline-oxidizing enzyme, and provided no evidence for other electron carriers which might mediate the reduction of the 98-kilodalton enzyme by ferredoxin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号