首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   851696篇
  免费   97699篇
  国内免费   351篇
  2016年   9183篇
  2015年   12643篇
  2014年   15052篇
  2013年   21857篇
  2012年   23961篇
  2011年   24460篇
  2010年   16434篇
  2009年   15360篇
  2008年   21853篇
  2007年   23087篇
  2006年   21594篇
  2005年   20812篇
  2004年   20805篇
  2003年   20201篇
  2002年   19701篇
  2001年   34934篇
  2000年   35458篇
  1999年   28446篇
  1998年   10406篇
  1997年   10937篇
  1996年   10495篇
  1995年   10035篇
  1994年   9944篇
  1993年   9862篇
  1992年   24978篇
  1991年   24746篇
  1990年   24533篇
  1989年   24004篇
  1988年   22425篇
  1987年   21478篇
  1986年   20125篇
  1985年   20645篇
  1984年   17219篇
  1983年   15052篇
  1982年   11678篇
  1981年   10778篇
  1980年   10083篇
  1979年   16929篇
  1978年   13289篇
  1977年   12399篇
  1976年   11790篇
  1975年   12961篇
  1974年   13796篇
  1973年   13549篇
  1972年   12767篇
  1971年   11283篇
  1970年   9865篇
  1969年   9514篇
  1968年   8822篇
  1967年   7676篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
211.
Calcium ionophores inhibit apoptosis in the IL-3-dependent cell line BAF3 and maintain the cells in a viable noncycling state. In this report, an identical effect of ionophore was also demonstrated on the multipotent IL-3-dependent progenitor cell line FDCP-MIX and on the primary IL-3-dependent cell population that could be cultured from murine bone marrow. Inhibition of apoptosis required extracellular calcium and could be blocked by cyclosporin A. Nuclei from IL-3-dependent cells were found to lack a calcium-activatable nuclease that degrades chromatin in the linker region between nucleosomes, unlike the nuclei of lymphoid cells. The mechanism of action of calcium ionophore could be divided into two distinct steps. First, ionophore induced the production of a survival factor that stimulated DNA synthesis and was identified as IL-4. Second, ionophore inhibited the cell cycle of the various IL-3-dependent cells. IL-4 production could be inhibited by cyclosporin A and required extracellular calcium, whereas cell cycle arrest did not. This implied that factor production was the step that was necessary for inhibition of apoptosis and maintenance of cell viability. This was confirmed by the use of an anti-IL-4R antibody, which blocked the inhibition of apoptosis induced by calcium ionophores.  相似文献   
212.
The processing of murine invariant chain (Ii) to a cell surface form bearing complex N-linked oligosaccharides has been demonstrated in the B cell lymphoma, AKTB-1b. In addition, the rate of processing of pulse-labeled Ii has been determined relative to its rate of dissociation from the alpha/beta complex of I-Ak. Ii, alpha-, and beta-chains were immunoprecipitated with anti-I-Ak or anti-Ii monoclonal antibodies. The heretofore uncharacterized complex oligosaccharide form of Ii (Ii-c) was identified in gel-purified immunoprecipitates by peptide mapping with reverse-phase HPLC. Ii-c is resistant to deglycosylation by Endo H, which is specific for high-mannose N-linkages, but can be digested with Endo F, a glycosidase capable of cleaving both complex and high-mannose N-linked oligosaccharides. Immunoprecipitation of surface iodinated cells indicates that Ii-c is expressed on the plasma membrane. Pulse-chase metabolic labeling data show that the processing of Ii to Ii-c occurs with a t1/2 of about 120 min. In contrast, the processing of both alpha- and beta-chains of I-Ak to complex forms occurs with a t1/2 of 15 to 20 min. Our data show that Ii-hm begins to dissociate rapidly from the I-Ak complex after 100 to 120 min of chase. Only a small amount (less than 5% on a per mole basis) of Ii-c was found associated with the I-Ak complexes after 300 min of continuous metabolic labeling. These results are consistent with Ii serving as a carrier for Ia antigens as they are transported to the cell surface. In addition, they suggest that the processing of Ii to Ii-c, or a late processing event of the alpha- and beta-chains, such as their sialylation, may be a possible mechanism for inducing the dissociation of Ii from the I-Ak complex.  相似文献   
213.
To define catalytically essential residues of bacteriophage T7 RNA polymerase, we have generated five mutants of the polymerase, D537N, K631M, Y639F, H811Q and D812N, by site-directed mutagenesis and purified them to homogeneity. The choice of specific amino acids for mutagenesis was based upon photoaffinity-labeling studies with 8-azido-ATP and homology comparisons with the Klenow fragment and other DNA/RNA polymerases. Secondary structural analysis by circular dichroism indicates that the protein folding is intact in these mutants. The mutants D537N and D812N are totally inactive. The mutant K631M has 1% activity, confined to short oligonucleotide synthesis. The mutant H811Q has 25% activity for synthesis of both short and long oligonucleotides. The mutant Y639F retains full enzymatic activity although individual kinetic parameters are somewhat different. Kinetic parameters, (kcat)app and (Km)app for the nucleotides, reveal that the mutation of Lys to Met has a much more drastic effect on (kcat)app than on (Km)app, indicating the involvement of K631 primarily in phosphodiester bond formation. The mutation of His to Gln has effects on both (kcat)app and (Km)app; namely, three- to fivefold reduction in (kcat)app and two- to threefold increase in (Km)app, implying that His811 may be involved in both nucleotide binding and phosphodiester bond formation. The ability of the mutant T7 RNA polymerases to bind template has not been greatly impaired. We have shown that amino acids D537 and D812 are essential, that amino acids K631 and H811 play significant roles in catalysis, and that the active site of T7 RNA polymerase is composed of different regions of the polypeptide chain. Possible roles for these catalytically significant residues in the polymerase mechanism are discussed.  相似文献   
214.
215.
216.
217.
218.
219.
L-myo-Inositol-1-phosphate synthase has been found to have at least a 5-fold preference for the beta-anomer of its natural substrate D-Glc-6-P. The alpha-anomer appears to be an inhibitor of the reaction and may be converted to product as well. As well as showing an enzymatic preference for the equatorial C-1 hydroxyl of D-Glc-6-P, our results suggest that it is the pyranose form of D-Glc-6-P that binds to the enzyme and that ring-opening is an enzymatic step. We have also found D-2-dGlc-6-P, D-2-F-2-dGlc-6-P, and D-Man-6-P each to be both competitive inhibitors and substrates that are converted to inositol phosphates by the synthase. D-Allose-6-P is a weak inhibitor of the enzyme, but not a substrate. D-Gal-6-P is neither substrate nor inhibitor. Thus the specificity of the synthase with respect to single position epimers of D-Glc-6-P increases in the order C1 less than C2 much less than C3 less than C4.  相似文献   
220.
The distribution of grooming and touching behaviours was recorded in a group of captive ring-tailed lemurs. Grooming was found to be performed chiefly by older, higher ranking animals; touching (i.e., “reach out and touch” behaviour) was directed primarily by younger, low ranking animals to older, high ranking individuals. It is suggested that such touching is a submissive gesture in this species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号