首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   20篇
  国内免费   1篇
  2021年   3篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   7篇
  2015年   5篇
  2014年   6篇
  2013年   8篇
  2012年   10篇
  2011年   9篇
  2010年   11篇
  2009年   11篇
  2008年   12篇
  2007年   12篇
  2006年   9篇
  2005年   6篇
  2004年   9篇
  2003年   13篇
  2002年   7篇
  2001年   12篇
  2000年   4篇
  1999年   11篇
  1998年   10篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   7篇
  1992年   4篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1975年   2篇
  1958年   1篇
排序方式: 共有234条查询结果,搜索用时 984 毫秒
51.
Caveolae may function as microdomains for signaling that help to determine specific biological actions mediated by the insulin receptor (IR). Caveolin-1, a major component of caveolae, contains a scaffolding domain (SD) that binds to a caveolin-1 binding motif in the kinase domain of the IR in vitro. To investigate the potential role of caveolin-1 in insulin signaling we overexpressed wild-type (Cav-WT) or mutant (Cav-Mut; F92A/V94A in SD) caveolin-1 in either Cos-7 cells cotransfected with IR or rat adipose cells (low and high levels of endogenous caveolin-1, respectively). Cav-WT coimmunoprecipitated with the IR to a much greater extent than Cav-Mut, suggesting that the SD is important for interactions between caveolin-1 and the IR in intact cells. We also constructed several IR mutants with a disrupted caveolin-1 binding motif and found that these mutants were poorly expressed and did not undergo autophosphorylation. Interestingly, overexpression of Cav-WT in Cos-7 cells significantly enhanced insulin-stimulated phosphorylation of Elk-1 (a mitogen-activated protein kinase-dependent pathway) while overexpression of Cav-Mut was without effect. In contrast, in adipose cells, overexpression of either Cav-WT or Cav-Mut did not affect insulin-stimulated phosphorylation of a cotransfected ERK2 (but did significantly inhibit basal phosphorylation of ERK2). Furthermore, we also observed a small inhibition of insulin-stimulated translocation of GLUT4 when either Cav-WT or Cav-Mut was overexpressed in adipose cells. Thus, interaction of caveolin-1 with IRs may differentially modulate insulin signaling to enhance insulin action in Cos-7 cells but inhibit insulin's effects in adipose cells.  相似文献   
52.
High density lipoprotein (HDL) activates endothelial nitric-oxide synthase (eNOS), leading to increased production of the antiatherogenic molecule NO. A variety of stimuli regulate eNOS activity through signaling pathways involving Akt kinase and/or mitogen-activated protein (MAP) kinase. In the present study, we investigated the role of kinase cascades in HDL-induced eNOS stimulation in cultured endothelial cells and COS M6 cells transfected with eNOS and the HDL receptor, scavenger receptor B-I. HDL (10-50 microg/ml, 20 min) caused eNOS phosphorylation at Ser-1179, and dominant negative Akt inhibited both HDL-mediated phosphorylation and activation of the enzyme. Phosphoinositide 3-kinase (PI3 kinase) inhibition or dominant negative PI3 kinase also blocked the phosphorylation and activation of eNOS by HDL. Studies with genistein and PP2 showed that the nonreceptor tyrosine kinase, Src, is an upstream stimulator of the PI3 kinase-Akt pathway in this paradigm. In addition, HDL activated MAP kinase through PI3 kinase, and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibition fully attenuated eNOS stimulation by HDL without affecting Akt or eNOS Ser-1179 phosphorylation. Conversely, dominant negative Akt did not alter HDL-induced MAP kinase activation. These results indicate that HDL stimulates eNOS through common upstream, Src-mediated signaling, which leads to parallel activation of Akt and MAP kinases and their resultant independent modulation of the enzyme.  相似文献   
53.
54.
Insulin receptor substrate (IRS) has been suggested as a molecular target of free fatty acids (FFAs) for insulin resistance. However, the signaling pathways by which FFAs lead to the inhibition of IRS function remain to be established. In this study, we explored the FFA-signaling pathway that contributes to serine phosphorylation and degradation of IRS-1 in adipocytes and in dietary obese mice. Linoleic acid, an FFA used in this study, resulted in a reduction in insulin-induced glucose uptake in 3T3-L1 adipocytes. This mimics insulin resistance induced by high-fat diet in C57BL/6J mice. The reduction in glucose uptake is associated with a decrease in IRS-1, but not IRS-2 or GLUT4 protein abundance. Decrease in IRS-1 protein was proceeded by IRS-1 (serine 307) phosphorylation that was catalyzed by serine kinases inhibitor kappaB kinase (IKK) and c-JUN NH2-terminal kinase (JNK). IKK and JNK were activated by linoleic acid and inhibition of the two kinases led to prevention of IRS-1 reduction. We demonstrate that protein kinase C (PKC) theta is expressed in adipocytes. In 3T3-L1 adipocytes and fat tissue, PKCtheta was activated by fatty acids as indicated by its phosphorylation status, and by its protein level, respectively. Activation of PKCtheta contributes to IKK and JNK activation as inhibition of PKCtheta by calphostin C blocked activation of the latter kinases. Inhibition of either PKCtheta or IKK plus JNK by chemical inhibitors resulted in protection of IRS-1 function and insulin sensitivity in 3T3-L1 adipocytes. These data suggest that: 1) activation of PKCtheta contributes to IKK and JNK activation by FFAs; 2) IKK and JNK mediate PKCtheta signals for IRS-1 serine phosphorylation and degradation; and 3) this molecular mechanism may be responsible for insulin resistance associated with hyperlipidemia.  相似文献   
55.
Insulin resistance is a risk factor for atherosclerosis and is associated with hyperinsulinemia, abnormal lipid profile, and hypertension. Whether hyperinsulinemia affects vascular function independent of insulin resistance or other metabolic risk factors is unknown. This investigation aimed to assess the effects of hyperinsulinemia on endothelial function in subjects with a spectrum of insulin sensitivity and lipid profile. Endothelium-dependent (flow-mediated dilation, FMD) and -independent (nitroglycerin) responses of the brachial artery were studied by high-resolution ultrasound before and during hyperinsulinemia (euglycemic clamp) in 25 normoglycemic, normotensive subjects. Participants were divided into an insulin-sensitive and an insulin-resistant subgroup based on their sensitivity index values, with a cutoff of 8, and into a normal-cholesterol and a high-cholesterol subgroup based on their total cholesterol levels, with a cutoff of 5.2 mmol/l (200 mg/dl). In the whole population, FMD was lower during hyperinsulinemia compared with baseline (2.3 +/- 0.6% vs. 6 +/- 0.6%; P < 0.001). Resting FMD was lower in the insulin-resistant subgroup compared with the insulin-sensitive subgroup (4.2 +/- 0.9% vs. 7.4 +/- 0.8%; P = 0.014) and in the high-cholesterol subjects compared with the normal-cholesterol subjects (4.4 +/- 0.7% vs. 8 +/- 0.7%; P = 0.002). Hyperinsulinemia decreased FMD in both the insulin-sensitive (from 7.4 +/- 0.8% to 3.6 +/- 0.4%; P < 0.001) and insulin-resistant (from 4.2% to 1.22%; P = 0.012) subgroups and in both the normal-cholesterol (from 8 +/- 0.7% to 3.9 +/- 0.4%; P < 0.001) and high-cholesterol (from 4.4 +/- 0.7% to 1.1 +/- 0.8%; P = 0.01) participants. Acute hyperinsulinemia impairs conduit vessel endothelial function independent of insulin sensitivity and lipid profile. Insulin may trigger endothelial dysfunction and promote atherosclerosis.  相似文献   
56.
57.
58.
59.
The genus Ceratocystis sensu stricto includes important fungal pathogens of woody and herbaceous plants. This genus is distinguished from species in Ceratocystis sensu lato by the presence of Chalara anamorphs. Ascospore shape has been used extensively in delineating Ceratocystis taxa, which show a large variety of ascospore shapes. Sequence analysis of one region of he 18S ribosomal RNA subunit and two regions of the 28S ribosomal RNA subunit showed that there was a majority of multiple substitutions at nucleotide sites and that there was a low transition/transversion ratio, T = 0.72. Both of these results suggest that these are well established, old species. Ascospore morphology, for the most part, was not congruent with the molecular phylogeny, and the use of morphological characters may be misleading in the taxonomy of these species.   相似文献   
60.
Goblet cells were visualized in impression cytology specimens from bulbar conjunctiva of the rabbit eye using Giemsa staining. Highly magnified images were used to generate outlines of the goblet cells and their characteristic eccentric nuclei. Using sets of 10 cells from 15 cytology specimens, I found that the longest dimension of the goblet cells averaged 16.7 ± 2.3 μm, the shortest dimension averaged 14.4 ± 1.8 μm and the nucleus averaged 6.3 ± 0.8 μm. The goblet cells were ellipsoid in shape and the longest:shortest cell dimension ratio averaged 1.169 ± 0.091. The goblet cell areas ranged from 108 to 338 μm2 (average 193 ± 50 μm2). The area could be predicted reliably from the longest and shortest dimensions (r2 = 0.903). The areas of goblet cell nuclei were 15–58 μm2 (average 33 ± μm2) and the nucleus:cytoplasm area fraction was predictably greater in smaller goblet cells and less in the larger goblet cells (Spearman correlation = 0.817). The nuclei were estimated to occupy an average of 9.5% of the cell volume. The differences in size, shape and nucleus:cytoplasm ratio may reflect differences in goblet cell maturation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号