首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   748篇
  免费   56篇
  国内免费   33篇
  837篇
  2023年   6篇
  2022年   21篇
  2021年   21篇
  2020年   15篇
  2019年   22篇
  2018年   20篇
  2017年   13篇
  2016年   16篇
  2015年   48篇
  2014年   41篇
  2013年   48篇
  2012年   58篇
  2011年   45篇
  2010年   31篇
  2009年   22篇
  2008年   38篇
  2007年   42篇
  2006年   35篇
  2005年   22篇
  2004年   21篇
  2003年   25篇
  2002年   32篇
  2001年   15篇
  2000年   20篇
  1999年   13篇
  1998年   13篇
  1997年   15篇
  1996年   5篇
  1995年   5篇
  1994年   5篇
  1993年   11篇
  1992年   6篇
  1990年   7篇
  1989年   4篇
  1988年   4篇
  1987年   10篇
  1986年   3篇
  1985年   5篇
  1984年   5篇
  1983年   3篇
  1981年   2篇
  1976年   4篇
  1975年   3篇
  1974年   2篇
  1973年   10篇
  1972年   2篇
  1970年   2篇
  1968年   3篇
  1967年   3篇
  1966年   8篇
排序方式: 共有837条查询结果,搜索用时 15 毫秒
61.
The "32-kDa" protein specifically associated with high plains disease was characterized by time-of-flight mass spectrometry, after the agent had been isolated in pure culture by "vascular puncture inoculation," a novel mechanical means of transmission. Two isolates from different geographic locations each consisted of a mixture of subpopulations that were highly homologous to an amino acid sequence derived from a nucleotide sequence (U60141) deposited in GenBank trade mark by the Nebraska group as "the probable N-protein of high plains virus." However, the U60141 sequence was found to be incomplete; de novo sequencing of peptides produced by proteolytic digestions of the 32-kDa band from an SDS-PAGE separation showed that an additional 18 amino acid residues were present at the N terminus. BLAST (basic local alignment search tool) examination of the sequence showed no significant homology with any protein in the databases, indicating that the infectious agent of high plains disease is likely a member of a hitherto unclassified virus group.  相似文献   
62.
The spectrogram of heart rate in denervated (vagotomy + propranolol) and artificially ventilated cats always contains the true respiratory peak and 1-3 resonance ones pacing at intervals equivalent to frequency of breathing. Hypothermic decrease of heart rate periodically draws the splitting of respiratory peaks and generation of supplementary rate-dependent peaks reflecting the interference of heart and breathing rhythms. The functional base for detection of mentioned peaks is myogenic reaction of sino-atrial node to its extension by fluctuations of venous inflow.  相似文献   
63.
Ca(2+)-dependent cyclic lipodepsipeptides are an emerging class of antibiotics for the treatment of infections caused by Gram-positive pathogens. These compounds are synthesized by nonribosomal peptide synthetase (NRPS) complexes encoded by large gene clusters. The gene cluster encoding biosynthetic pathway enzymes for the Streptomyces fradiae A54145 NRP was cloned from a cosmid library and characterized. Four NRPS-encoding genes, responsible for subunits of the synthetase, as well as genes for accessory functions such as acylation, methylation and hydroxylation, were identified by sequence analysis in a 127 kb region of DNA that appears to be located subterminally in the bacterial chromosome. Deduced epimerase domain-encoding sequences within the NRPS genes indicated a D: -stereochemistry for Glu, Lys and Asn residues, as observed for positionally analogous residues in two related compounds, daptomycin, and the calcium-dependent antibiotic (CDA) produced by Streptomyces roseosporus and Streptomyces coelicolor, respectively. A comparison of the structure and the biosynthetic gene cluster of A54145 with those of the related peptides showed many similarities. This information may contribute to the design of experiments to address both fundamental and applied questions in lipopeptide biosynthesis, engineering and drug development.  相似文献   
64.
Previous studies have shown that UV-B could affect pollen germination and tube growth. However, the mechanism of response of pollen to UV-B has not been clear. The purpose of this study was to investigate the role of hydrogen peroxide (H2O2) in the UV-B-induced reduction of in vitro pollen germination and tube growth of Paeonia suffruticosa Andr. and Paulownia tomentosa Steud. Exposure of pollen of the two species to 0.4 and 0.8 W m−2 UV-B radiation for 3 h resulted in not only the reduction of pollen germination and tube growth, but also the H2O2 production in pollen grain and tube. Also, exogenous H2O2 inhibited pollen germination and tube growth of the two species in a dose-dependence manner. Two scavengers of H2O2, ascorbic acid and catalase, largely prevented not only the H2O2 generation, but also the reduction of pollen germination and tube growth induced by UV-B radiation in the two species. These results indicate that H2O2 is involved in the UV-B-inhibited pollen germination and tube growth.  相似文献   
65.
The ClC family of chloride channels and transporters includes several members in which mutations have been associated with human disease. An understanding of the structure-function relationships of these proteins is essential for defining the molecular mechanisms underlying pathogenesis. To date, the X-ray crystal structures of prokaryotic ClC transporter proteins have been used to model the membrane domains of eukaryotic ClC channel-forming proteins. Clearly, the fidelity of these models must be evaluated empirically. In the present study, biochemical tools were used to define the membrane domain boundaries of the eukaryotic protein, ClC-2, a chloride channel mutated in cases of idiopathic epilepsy. The membrane domain boundaries of purified ClC-2 and accessible cysteine residues were determined after its functional reconstitution into proteoliposomes, labelling using a thiol reagent and proteolytic digestion. Subsequently, the lipid-embedded and soluble fragments generated by trypsin-mediated proteolysis were studied by MS and coverage of approx. 71% of the full-length protein was determined. Analysis of these results revealed that the membrane-delimited boundaries of the N- and C-termini of ClC-2 and the position of several extramembrane loops determined by these methods are largely similar to those predicted on the basis of the prokaryotic protein [ecClC (Escherichia coli ClC)] structures. These studies provide direct biochemical evidence supporting the relevance of the prokaryotic ClC protein structures towards understanding the structure of mammalian ClC channel-forming proteins.  相似文献   
66.
The mechanisms underlying diabetes-mediated bone loss are not well defined. It has been reported that the advanced glycation endproducts (AGEs) and receptor for AGEs (RAGEs) are involved in diabetic complications. Here, mice deficient in RAGE were used as a model for investigating the effects of RAGE on bone mass. We found that RAGE-/- mice have a significantly increased bone mass and bone biomechanical strength and a decreased number of osteoclasts compared to wild-type mice. The serum levels of IL-6 and bone breakdown marker pyridinoline were significantly decreased in RAGE-/- mice. RAGE-/- mice maintain bone mass following ovariectomy, whereas wild-type mice lose bone mass. Furthermore, osteoclast-like cells do express RAGE mRNA. Our data therefore indicate that RAGE serves as a positive factor to regulate the osteoclast formation, directly implicates a role for RAGE in diabetes-promoted bone destruction, and documents that the AGE-RAGE interaction may account for diabetes associated bone loss.  相似文献   
67.
68.
Eukaryotic cells contain assemblies of RNAs and proteins termed RNA granules. Many proteins within these bodies contain KH or RRM RNA-binding domains as well as low complexity (LC) sequences of unknown function. We discovered that exposure of cell or tissue lysates to a biotinylated isoxazole (b-isox) chemical precipitated hundreds of RNA-binding proteins with significant overlap to the constituents of RNA granules. The LC sequences within these proteins are both necessary and sufficient for b-isox-mediated aggregation, and these domains can undergo a concentration-dependent phase transition to a hydrogel-like state in the absence of the chemical. X-ray diffraction and EM studies revealed the hydrogels to be composed of uniformly polymerized amyloid-like fibers. Unlike pathogenic fibers, the LC sequence-based polymers described here are dynamic and accommodate heterotypic polymerization. These observations offer a framework for understanding the function of LC sequences as well as an organizing principle for cellular structures that are not membrane bound.  相似文献   
69.
A putative protease gene (tldD) was previously identified from studying tolerance of letD encoding the CcdB toxin of a toxin–antidote system of the F plasmid in Escherichia coli. While this gene is evolutionarily conserved in archaea and bacteria, the proteolytic activity of encoded proteins remained to be demonstrated experimentally. Here we studied Sso0660, an archaeal TldD homologue encoded in Sulfolobus solfataricus by overexpression of the recombinant protein and characterization of the purified enzyme. We found that the enzyme is active in degrading azocasein and FITC–BSA substrates. Protease inhibitor studies showed that EDTA and o-phenanthroline, two well-known metalloprotease inhibitors, either abolished completely or strongly inhibited the enzyme activity, and flame spectrometric analysis showed that a zinc ion is a cofactor of the protease. Furthermore, the protein forms disulfide bond via the Cys416 residue, yielding protein dimer that is the active form of the enzyme. These results establish for the first time that tidD genes encode zinc-containing proteases, classifying them as a family in the metalloprotease class.  相似文献   
70.
The formation of mRNPs controls the interaction of the translation and degradation machinery with individual mRNAs. The yeast Scd6 protein and its orthologs regulate translation and mRNA degradation in yeast, C.?elegans, D.?melanogaster, and humans by an unknown mechanism. We demonstrate that Scd6 represses translation by binding the eIF4G subunit of eIF4F in a manner dependent on its RGG domain, thereby forming an mRNP repressed for translation initiation. Strikingly, several other RGG domain-containing proteins in yeast copurify with eIF4E/G and we demonstrate that two such proteins, Npl3 and Sbp1, also directly bind eIF4G and repress translation in a manner dependent on their RGG motifs. These observations identify the mechanism of Scd6 function through its RGG motif and indicate that eIF4G plays an important role as a scaffolding protein for the recruitment of translation repressors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号