首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4719篇
  免费   314篇
  国内免费   316篇
  2024年   4篇
  2023年   60篇
  2022年   150篇
  2021年   240篇
  2020年   155篇
  2019年   184篇
  2018年   186篇
  2017年   141篇
  2016年   204篇
  2015年   260篇
  2014年   342篇
  2013年   370篇
  2012年   414篇
  2011年   351篇
  2010年   232篇
  2009年   214篇
  2008年   236篇
  2007年   171篇
  2006年   165篇
  2005年   162篇
  2004年   156篇
  2003年   147篇
  2002年   104篇
  2001年   118篇
  2000年   85篇
  1999年   99篇
  1998年   46篇
  1997年   33篇
  1996年   36篇
  1995年   34篇
  1994年   30篇
  1993年   18篇
  1992年   28篇
  1991年   22篇
  1990年   31篇
  1989年   8篇
  1988年   17篇
  1987年   12篇
  1986年   9篇
  1985年   8篇
  1984年   10篇
  1983年   8篇
  1982年   7篇
  1981年   5篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1975年   6篇
  1974年   3篇
排序方式: 共有5349条查询结果,搜索用时 46 毫秒
991.
Enzyme immobilization for biodiesel production   总被引:1,自引:0,他引:1  
Biodiesel has attracted more and more attention in recent years because of its biodegradability, environmentally friendliness, and renewability. Contrary to the conventional chemical catalysis method to produce biodiesel, the biochemical catalysis method developed quickly in the past decade and many immobilized enzymes are commercially available to meet the large-scale industrialization of biodiesel. This review is focusing on the current status of biodiesel production by biochemical catalysis method, especially the commercial enzyme and its immobilization for biodiesel production. Consequently, we believe that biochemical catalysis with immobilized enzymes is bound to be an alternative method instead of chemical catalysis in biodiesel production in the near future.  相似文献   
992.
Liu L  Chen J  Ji C  Zhang J  Sun J  Li Y  Xie Y  Gu S  Mao Y 《Molecules and cells》2008,26(2):193-199
The pro-apoptotic Bcl-2 family member Bim acts as a sensor for apoptotic stimuli and initiates apoptosis through the mitochondrial pathway. To identify novel regulators of Bim, we employed the yeast two-hybrid system and isolated the human gene encoding macrophage migration inhibitory factor (MIF), a ubiquitously expressed proinflammatory mediator that has also been implicated in cell proliferation, the cell cycle and carcinogenesis. The interaction between MIF and Bim was confirmed by both in vitro and in vivo protein interaction assays. Intriguingly, protein complexes between MIF and the three major Bim isoforms (BimEL/BimL/BimS) could be detected in HEK293 and K562 cells, especially in cells undergoing apoptosis. Moreover, exogenous expression of MIF partially inhibited Bim-induced apoptosis in HEK293 cells. SiRNA-mediated knockdown of MIF increased apoptosis in K562 cells exposed to the chemical oxidant diamide. Endogenous MIF may regulate the pro-apoptotic activity of Bim and inhibit the release of cytochrome c from mitochondria.  相似文献   
993.
硬覆盖对土壤水热传输及作物生长发育影响的试验研究   总被引:2,自引:0,他引:2  
河北省盐渍区农业水资源非常紧缺 ,农业节水势在必行。覆盖保摘技术是农田节水管理的重要措施之一 ,国内外对此有过不少研究报道。但多集中在地膜、秸秆、砂砾和化学喷涂等覆盖材料上 ,这些覆盖材料在使用中有种种不理想之处 ,如地膜覆盖容易造成残膜的“白色污染” ,并且使用年限短 ,降水不易入渗 ,中耕、除草、施肥困难 ,使作物抗病力差等[1 ] ;秸秆覆盖容易使秸秆中的毒素物质与作物间发生生化它感现象 ,影响作物生长[2 ] 。化学喷涂除了不利于农事作业外 ,还可能造成土壤污染。为此 ,我们在中国科学院南皮试区盐渍土上试用了一种新型覆…  相似文献   
994.
995.
血清多肽是癌症诊断信息的重要来源,建立、优化了检测多肽标志物的直接ELISA法,并应用于肝癌血清中的多肽标志物的检测。制备及纯化针对多肽标志物Pep5的单克隆抗体并进行辣根过氧化物酶标记,用其建立检测相应抗原的直接ELISA法。方法线性范围为1.5-20 ng/mL,检测限为1.24 ng/mL;标准品批内及批间CV分别小于3.66%及4.89%,血清样本批内及批间CV分别小于11.69%及18.18%;线性范围内(9、12和15 ng/mL)的回收率分别为98.98%,99.61%和101.58%。应用该方法共检测160例正常血清、104例肝硬化及156例肝癌患者血清,正常组与肝硬化组及肝癌组间差异显著(P<0.001),Pep5诊断肝癌的敏感性和特异性分别为80.8%和96.2%。同时检测94例HCC血清中的AFP和Pep5,AFP检出率为63.8%,Pep5检出率为90.4%,AFP联合Pep5检测时,能将HCC的检出率提高至94.7%。  相似文献   
996.
997.
Q Zhu  X Zhang  L Zhang  W Li  H Wu  X Yuan  F Mao  M Wang  W Zhu  H Qian  W Xu 《Cell death & disease》2014,5(6):e1295
Emerging evidence indicate that mesenchymal stem cells (MSCs) affect tumor progression by reshaping the tumor microenvironment. Neutrophils are essential component of the tumor microenvironment and are critically involved in cancer progression. Whether the phenotype and function of neutrophils is influenced by MSCs is not well understood. Herein, we investigated the interaction between neutrophils and gastric cancer-derived MSCs (GC-MSCs) and explored the biological role of this interaction. We found that GC-MSCs induced the chemotaxis of neutrophils and protected them from spontaneous apoptosis. Neutrophils were activated by the conditioned medium from GC-MSCs with increased expression of IL-8, TNFα, CCL2, and oncostatin M (OSM). GC-MSCs-primed neutrophils augmented the migration of gastric cancer cells in a cell contact-dependent manner but had minimal effect on gastric cancer cell proliferation. In addition, GC-MSCs-primed neutrophils prompted endothelial cells to form tube-like structure in vitro. We demonstrated that GC-MSCs stimulated the activation of STAT3 and ERK1/2 pathways in neutrophils, which was essential for the functions of activated neutrophils. We further revealed that GC-MSCs-derived IL-6 was responsible for the protection and activation of neutrophils. In turn, GC-MSCs-primed neutrophils induced the differentiation of normal MSCs into cancer-associated fibroblasts (CAFs). Collectively, our results suggest that GC-MSCs regulate the chemotaxis, survival, activation, and function of neutrophils in gastric cancer via an IL-6–STAT3–ERK1/2 signaling cascade. The reciprocal interaction between GC-MSCs and neutrophils presents a novel mechanism for the role of MSCs in remodeling cancer niche and provides a potential target for gastric cancer therapy.Accumulating evidence suggest that neutrophils are critical for cancer initiation and progression.1, 2 The increased presence of intratumoral neutrophils has been linked to a poorer prognosis for patients with renal cancer, hepatocellular carcinoma (HCC), melanoma, head and neck squamous cell carcinoma (HNSCC), pancreatic cancer, colorectal carcinoma, and gastric adenocarcinoma.3 Recent studies using murine tumor models or involving cancer patients have suggested an important functional role of neutrophils during tumor progression.4, 5, 6, 7 Neutrophils-derived factors promote genetic mutations leading to tumorigenesis or promote tumor cell proliferation,8 migration, and invasion.9, 10 Neutrophils have also been demonstrated to induce tumor vascularization by the production of pro-angiogenic factors11, 12The infiltration of neutrophils into tumors has been shown to be mediated by factors produced by both tumor and stromal cells. Recent reports suggest that tumor cells actively modulate the functions of neutrophils. Tumor-derived CXCL5 modulates the chemotaxis of neutrophils, which in turn enhances the migration and invasion of human HCC cells.13 HNSCC cells-derived MIF induces the recruitment and activation of neutrophils through a p38-dependent manner.14, 15 Neutrophils respond to hyaluronan fragments in tumor supernatants via PI3K/Akt signaling, leading to prolonged survival and stimulating effect on HCC cell motility.16 Kuang et al.17 suggest that IL-17 promotes the migration of neutrophils into HCC through epithelial cell-derived CXC chemokines, resulting in increased MMP-9 production and angiogenesis at invading tumor edge However, much less is known about the role of stromal cells in modulating the phenotype and function of neutrophils in cancer thus far.Cancer-associated fibroblasts (CAFs) have a key role in cancer mainly through secretion of soluble factors, as growth factors or inflammatory mediators, as well as production of extracellular matrix proteins and their proteases. These activated fibroblasts are involved in creating a niche for cancer cells, promoting their proliferation, motility and chemoresistance. Activated fibroblasts express several mesenchymal markers such as α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP), and vimentin. CAFs actively participate in reciprocal interaction with tumor cells and with other cell types in the microenvironment, contributing to a tumor-permissive niche and promoting tumor progression.Mesenchymal stem cells (MSCs) are adult stromal cells with self-renewal and pluripotent differentiation abilities. MSCs can be mobilized from bone marrow to the site of damage, respond to the local microenvironment, and exert wound repair and tissue regeneration functions upon injury and inflammation conditions.18 MSCs have been considered as one of the major components of the tumor stroma and are believed to be the precursors of CAFs.19, 20 We have previously demonstrated that human bone marrow MSCs prompt tumor growth in vivo.21 In addition, we have recently isolated MSCs-like cells from the gastric cancer tissues (GC) and the adjacent normal tissues (GCN) and shown that the gastric cancer-derived MSCs (GC-MSCs) possess the properties of CAFs.22, 23 As tumor-derived MSCs are often exposed to distinct inflammatory cells and factors in the tumor microenvironment, they may acquire novel functions that are not present in normal MSCs, and these unique functions may have a role in reshaping the tumor microenvironment and ultimately affect tumor progression. As neutrophils are key mediators of tumor progression and tumor angiogenesis, it is likely that an intense interaction may exist between the tumor-derived MSCs and tumor-infiltrating neutrophils.The emerging roles of CAFs in cancer immunoeditting led us to investigate whether GC-MSCs are able to regulate the phenotype and function of neutrophils in gastric cancer. We have shown that there is a reciprocal interaction between GC-MSCs and neutrophils. GC-MSCs enhanced the chemotaxis of peripheral blood-derived neutrophils and protected them from spontaneous apoptosis. GC-MSCs induced the activation of neutrophils to highly express IL-8, CCL2, TNFα, and oncostatin M (OSM), leading to the increase of gastric cancer cell migration and angiogenesis in vitro. GC-MSCs exerted this effect through the IL-6–STAT3–ERK1/2 signaling axis, and blockade of the IL-6–IL-6R interaction or pharmacological inhibition of STAT3 and ERK1/2 activation abrogated this role. In turn, GC-MSCs-activated neutrophils could trigger the CAF differentiation of normal MSCs. Therefore, these results establish a bi-directional interaction between GC-MSCs and neutrophils that may be critically involved in the progression of gastric cancer.  相似文献   
998.
Mesenchymal stem cells (MSCs) possess an immunoregulatory capacity and are a therapeutic target for many inflammation‐related diseases. However, the detailed mechanisms of MSC‐mediated immunosuppression remain unclear. In this study, we provide new information to partly explain the molecular mechanisms of immunoregulation by MSCs. Specifically, we found that A20 expression was induced in MSCs by inflammatory cytokines. Knockdown of A20 in MSCs resulted in increased proliferation and reduced adipogenesis, and partly reversed the suppressive effect of MSCs on T cell proliferation in vitro and inhibited tumour growth in vivo. Mechanistic studies indicated that knockdown of A20 in MSCs inhibited activation of the p38 mitogen‐activated protein kinase (MAPK) pathway, which potently promoted the production of tumour necrosis factor (TNF)‐α and inhibited the production of interleukin (IL)‐10. Collectively, these data reveal a crucial role of A20 in regulating the immunomodulatory activities of MSCs by controlling the expression of TNF‐α and IL‐10 in an inflammatory environment. These findings provide novel insights into the pathogenesis of various inflammatory‐associated diseases, and are a new reference for the future development of treatments for such afflictions.  相似文献   
999.
Zinc has been shown to be an inhibitor of apoptosis for many years. The present study was designed to investigate effects of three zinc chemical forms on H2O2-induced cell apoptosis in IEC-6 cells via analysis of cell vitality, LDH activity, apoptosis percentage, caspase-3 activity, and Bcl-2, Bax, and caspase-3, -8, and -9 gene expression. Cells were divided into H2O2 and zinc sources+H2O2 groups, and there are three different zinc sources [zinc oxide nanoparticle (nano-ZnO), zinc oxide (ZnO), and zinc sulfate (ZnSO4)] and three concentrations (normal = 25 μM, medium = 50 μM, and high = 100 μM) used in this article. In the present study, we found the striking cytotoxicity of H2O2 higher than 200 μM on cell vitality, LDH activity, and apoptosis percentage in the cells using five different concentrations (50, 100, 200, 400, and 800 μM) of H2O2 for 4 h. Moreover, we observed that cell vitality was increased, LDH activity and apoptotic percentage were decreased, and gene expression level of Bax and caspase-3 and -9 was markedly reduced, while gene expression level of Bcl-2 and ratio of Bcl-2/Bax were increased in normal concentration groups of nano-ZnO and ZnSO4 compared with H2O2 group, but no significant difference was observed in caspase-8 gene expression. Furthermore, medium or, more intensely, high concentrations of nano-ZnO and ZnSO4 enhanced H2O2-induced cell apoptosis. Compared with nano-ZnO and ZnSO4, ZnO showed weakest protective effect on H2O2-induced apoptosis at normal concentration and was less toxic to cells at high level. Taken together, we proposed that preventive and protective effects of zinc on H2O2-induced cell apoptosis varied in IEC-6 cells with its chemical forms and concentrations, and maybe for the first time, we suggested that nano-ZnO have a protective effect on H2O2-induced cell apoptosis in IEC-6 cells.  相似文献   
1000.
Bronchial asthma (BA) is a common chronic inflammatory disease characterized by hyperresponsive airways, excess mucus production, eosinophil activation, and the production of IgE. The complement system plays an immunoregulatory role at the interface of innate and acquired immunities. Recent studies have provided evidence that C3, C3a receptor, and C5 are linked to airway hyperresponsiveness. To determine whether genetic variations in the genes of the complement system affect susceptibility to BA, we screened single nucleotide polymorphisms (SNPs) in C3, C5, the C3a receptor gene (C3AR1), and the C5a receptor gene (C5R1) and performed association studies in the Japanese population. The results of this SNP case-control study suggested an association between 4896C/T in the C3 gene and atopic childhood BA (P=0.0078) as well as adult BA (P=0.010). When patient data were stratified according to elevated total IgE levels, 4896C/T was more closely associated with adult BA (P=0.0016). A patient-only association study suggested that severity of childhood BA was associated with 1526G/A of the C3AR1 gene (P=0.0057). We identified a high-risk haplotype of the C3 gene for childhood (P=0.0021) and adult BA (P=0.0058) and a low-risk haplotype for adult BA (P=0.00011). We also identified a haplotype of the C5 gene that was protective against childhood BA (P=1.4×10–6) and adult BA (P=0.00063). These results suggest that the C3 and C5 pathways of the complement system play important roles in the pathogenesis of BA and that polymorphisms of these genes affect susceptibility to BA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号