首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1989篇
  免费   203篇
  2023年   16篇
  2022年   18篇
  2021年   30篇
  2020年   23篇
  2019年   31篇
  2018年   31篇
  2017年   22篇
  2016年   37篇
  2015年   68篇
  2014年   73篇
  2013年   87篇
  2012年   91篇
  2011年   122篇
  2010年   66篇
  2009年   64篇
  2008年   98篇
  2007年   72篇
  2006年   81篇
  2005年   64篇
  2004年   88篇
  2003年   73篇
  2002年   88篇
  2001年   62篇
  2000年   66篇
  1999年   57篇
  1998年   28篇
  1997年   14篇
  1996年   22篇
  1995年   24篇
  1994年   15篇
  1993年   16篇
  1992年   48篇
  1991年   36篇
  1990年   50篇
  1989年   34篇
  1988年   31篇
  1987年   30篇
  1986年   12篇
  1985年   24篇
  1984年   23篇
  1983年   23篇
  1982年   16篇
  1981年   16篇
  1980年   17篇
  1979年   21篇
  1977年   12篇
  1976年   12篇
  1973年   12篇
  1971年   11篇
  1967年   16篇
排序方式: 共有2192条查询结果,搜索用时 46 毫秒
961.
A monoclonal antibody specific for the A antigen of Brucella spp   总被引:3,自引:0,他引:3  
Two murine monoclonal antibodies of the IgG3 class have been isolated after immunization with Brucella abortus. An indirect immunofluorescence test was used to screen hybridoma supernatants and subsequently to determine the cross-reactivity of the monoclonal antibodies with other bacteria. One monoclonal antibody reacted with all the smooth Brucella biotypes tried and with Yersinia enterocolitica serogroup 0:9, though not with rough Br. ovis or with strains of Escherichia, Proteus, Salmonella, Pseudomonas, Francisella and Bordetella. The other monoclonal antibody displayed a high degree of specificity for brucellae carrying the A lipopolysaccharide-protein surface antigen. The implications for the diagnosis of brucellosis are discussed.  相似文献   
962.
Rat brain homogenates incubated with exogenous [32-P] phosphatidylcholine liberated: LYSO[32-P] phosphatidylcholine, sn-glycero-3-[32-P] phosphorylcholine, [32-P] phosphorylcholine, sn-gleycero-3-[32-P] phosphate and 32-Pi. Further investigation showed that [32-P] phosphorylcholine was released exclusively from sn-glycero-3-[32-P] phosphorylcholien by a novel diesterase activity. We propose that the enzyme be termed L-3-glycerylphosphinicocholine cholinephosphohydrolase (EC 3.1.4.-). Parallel experiments on rat liver homogenates and a P815Y mouse mastocytoma cell-lysate, revealed no diesterase activity.  相似文献   
963.
964.
965.

Background

It is often assumed that local sexual networks play a dominant role in HIV spread in sub-Saharan Africa. The aim of this study was to determine the extent to which continued HIV transmission in rural communities—home to two-thirds of the African population—is driven by intra-community sexual networks versus viral introductions from outside of communities.

Methods and Findings

We analyzed the spatial dynamics of HIV transmission in rural Rakai District, Uganda, using data from a cohort of 14,594 individuals within 46 communities. We applied spatial clustering statistics, viral phylogenetics, and probabilistic transmission models to quantify the relative contribution of viral introductions into communities versus community- and household-based transmission to HIV incidence. Individuals living in households with HIV-incident (n = 189) or HIV-prevalent (n = 1,597) persons were 3.2 (95% CI: 2.7–3.7) times more likely to be HIV infected themselves compared to the population in general, but spatial clustering outside of households was relatively weak and was confined to distances <500 m. Phylogenetic analyses of gag and env genes suggest that chains of transmission frequently cross community boundaries. A total of 95 phylogenetic clusters were identified, of which 44% (42/95) were two individuals sharing a household. Among the remaining clusters, 72% (38/53) crossed community boundaries. Using the locations of self-reported sexual partners, we estimate that 39% (95% CI: 34%–42%) of new viral transmissions occur within stable household partnerships, and that among those infected by extra-household sexual partners, 62% (95% CI: 55%–70%) are infected by sexual partners from outside their community. These results rely on the representativeness of the sample and the quality of self-reported partnership data and may not reflect HIV transmission patterns outside of Rakai.

Conclusions

Our findings suggest that HIV introductions into communities are common and account for a significant proportion of new HIV infections acquired outside of households in rural Uganda, though the extent to which this is true elsewhere in Africa remains unknown. Our results also suggest that HIV prevention efforts should be implemented at spatial scales broader than the community and should target key populations likely responsible for introductions into communities. Please see later in the article for the Editors'' Summary  相似文献   
966.
967.
The structure and thermotropic phase behaviour of aqueous dispersions of dipalmitoylphosphatidylcholine and glucosylceramide rich in C-24 fatty acyl residues was investigated by synchrotron X-ray diffraction methods. Binary mixtures comprised of molar ratios 2.5:100, 6.5:100, 12.6:100, 25:100, 40:100 and 50:100, glucolipid:phospholipid were examined in heating and cooling scans of 2°/min between 25 and 85 °C. Small-angle reflections indicated coexisting lamellar structures over the entire temperature range investigated. Reversible thermotropic changes were observed in one lamellar structure that is consistent with transitions between gel, ripple and fluid lamellar phases of pure phospholipid. The temperature of these transitions, however, were progressively shifted up by about 5 °C in the mixture containing the highest proportion of glucolipid and coincided with a published endothermic peak observed in this mixture. A higher-temperature endotherm was associated with molecular rearrangements on transition of the gel phase phospholipid to the fluid phase. This rearrangement was associated with the appearance of identifiable transient intermediate structures in the small-angle scattering region. The glucolipid formed stoichiometric mixtures with the phospholipid at all temperatures investigated and there was no evidence of phase separation of pure glucolipid. Analysis of the wide-angle scattering profiles during an initial heating scan of a binary mixture comprised of 40:60 glucolipid:phospholipid was consistent with a phase transition of pure phospholipid at about 43 °C coexisting with a liquid-ordered phase formed from the two lipids. This was confirmed by analysis of the small-angle scattering peaks of this mixture recorded at 25 and 65 °C which showed that a glucolipid-rich phase coexisted with almost pure bilayers of phospholipid at both temperatures. The glucolipid-rich phase consisted of 45:55 mole ratio glucolipid:phospholipid at 25 °C with pure phospholipid in gel phase and 42:58 mole ratio at 65 °C when the phospholipid was in the fluid phase. The results are discussed with reference to the role of the length of the N-acyl substituent of the sphingolipids in formation of complexes with phospholipids.  相似文献   
968.
Free-standing giant unilamellar vesicles were used to visualize the complex lateral heterogeneity, induced by ceramide in the membrane bilayer at micron scale using C12-NBD-PC probe partitioning under the fluorescence microscope. Ceramide gel domains exist as leaf-like structures in glycerophospholipid/ceramide mixtures. Cholesterol readily increases ceramide miscibility with glycerophospholipids but cholesterol-ceramide interactions are not involved in the organization of the liquid-ordered phase as exemplified by sphingomyelin/cholesterol mixtures. Sphingomyelin stabilizes the gel phase and thus decreases ceramide miscibility in the presence of cholesterol. Gel/liquid-ordered/liquid-disordered phase coexistence was visualized in quaternary phosphatidylcholine/sphingomyelin/ceramide/cholesterol mixtures as occurrence of dark leaf-like and circular domains within a bright liquid phase. Sphingomyelin initiates specific ceramide-sphingomyelin interactions to form a highly ordered gel phase appearing at temperatures higher than pure ceramide gel phase in phosphatidylcholine/ceramide mixtures. Less sphingomyelin is engaged in formation of liquid-ordered phase leading to a shift in its formation to lower temperatures. Sphingomyelinase activity on substrate vesicles destroys micron Lo domains but induces the formation of a gel-like phase. The activation of phospholipase A2 by ceramide on heterogeneous membranes was visualized. Changes in the phase state of the membrane bilayer initiates such morphological processes as membrane fragmentation, budding in and budding out was demonstrated.  相似文献   
969.
Fertilization induces a species-specific Ca2+ transient with specialized spatial and temporal dynamics, which are essential to temporally encode egg activation events such as the block to polyspermy and resumption of meiosis. Eggs acquire the competence to produce the fertilization-specific Ca2+ transient during oocyte maturation, which encompasses dramatic potentiation of inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ release. Here we show that increased IP3 receptor (IP3R) sensitivity is initiated at the germinal vesicle breakdown stage of maturation, which correlates with maturation promoting factor (MPF) activation. Extensive phosphopeptide mapping of the IP3R resulted in ∼70% coverage and identified three residues, Thr-931, Thr-1136, and Ser-114, which are specifically phos pho ryl a ted during maturation. Phospho-specific antibody analyses show that Thr-1136 phos pho ryl a tion requires MPF activation. Activation of either MPF or the mitogen-activated protein kinase cascade independently, functionally sensitizes IP3-dependent Ca2+ release. Collectively, these data argue that the kinase cascades driving meiotic maturation potentiates IP3-dependent Ca2+ release, possibly trough direct phos pho ryl a tion of the IP3R.Egg activation refers to the cellular and molecular events that take place immediately following fertilization, transitioning the zygote into embryogenesis. In vertebrates, egg activation encompasses the block to polyspermy and the completion of oocyte meiosis, which is coupled to the extrusion of the second polar body. Interestingly, in all sexually reproducing organisms tested to date the cellular events associated with egg activation are Ca2+-dependent (1). Importantly the Ca2+ signal at fertilization encodes the progression of these cellular events in a defined temporal sequence that ensures a functional egg-to-embryo transition (2, 3). The first order of business for the fertilized egg is to block polyspermy, which could be lethal to the embryo. This presents a particularly difficult problem for the large Xenopus oocyte. Therefore, this species employs a fast and slow blocks to polyspermy, both of which are Ca2+-dependent (4). In addition, the Ca2+ release wave at fertilization releases the metaphase II cytostatic factor-dependent arrest in Xenopus oocytes. As is the case in other vertebrates, Xenopus eggs arrest at metaphase of meiosis II, an event that marks the completion of maturation.Therefore, Ca2+ dynamics at fertilization initiate and temporally encode critical cellular events for the egg-to-embryo transition. Specificity in Ca2+ signaling is encoded to a large extent in the spatial, temporal, and amplitude features of the Ca2+ signal. This endows Ca2+ signaling with its versatility and specificity, where in the same cell Ca2+ signals can mediate distinct cellular responses (5, 6).Ca2+ signaling pathways and intracellular organelles remodel during oocyte maturation, a complex cellular differentiation that prepares the egg for fertilization and egg activation (7, 8). In Xenopus the activity and distribution of multiple essential Ca2+-transporting proteins is modulated dramatically during oocyte maturation (8). Functional studies and mathematical modeling support the conclusion that the two critical determinants of Ca2+ signaling remodeling during Xenopus oocyte maturation are the internalization of the plasma-membrane Ca2+-ATPase, and the sensitization of inositol 1,4,5-trisphosphate (IP3)2-dependent Ca2+ release (911). Indeed Ca2+ release from intracellular stores through the IP3 receptor (IP3R) represents the primary source for the initial Ca2+ rise at fertilization in vertebrates (1214). The sensitivity of IP3-dependent Ca2+ release is enhanced during maturation (10, 15). The IP3R physically clusters during maturation (9, 16), and this is associated with functional clustering of elementary Ca2+ release events (10). IP3R clustering is important for the slow and continuous nature of Ca2+ wave propagation in Xenopus eggs (10). In fact the potentiation of IP3-dependent Ca2+ release is a hallmark of Ca2+ signaling differentiation during oocyte maturation in several vertebrate and invertebrate species (1719). However, the mechanisms underlying enhanced IP3-dependent Ca2+ release are not well understood.An attractive mechanism to explain increased IP3R sensitivity during oocyte maturation is phosphorylation, given the critical role kinase cascades play in the initiation and progression of the meiotic cell cycle. Furthermore, the affinity of the IP3R increases during mitosis apparently due to direct phosphorylation by maturation-promoting factor (MPF) (20, 21). In contrast, in starfish eggs, although the increase in Ca2+ release was dependent on MPF activation, MPF does not directly phosphorylate the IP3R, but rather it appears to mediate its effect through the actin cytoskeleton (22, 23). More recently, the MAPK cascade has been shown to be important for shaping Ca2+ dynamics in mouse eggs (24). Together, these results argue that phosphorylation plays an important role in the sensitization of IP3-dependent Ca2+ release during M-phase.Xenopus oocyte maturation is initiated by steroids that appear to act on a cell surface receptor (25). An important kinase cascade activated during maturation is the MAPK cascade that is initiated through the accumulation of Mos (Fig. 1A). This cascade culminates in the inhibition of Myt1, which phosphorylates and inhibits MPF. MPF is the key regulator of entry into M-phase and is composed of a Ser/Thr kinase subunit (cdk1) and cyclin B as a regulatory subunit. In addition, activation of Cdc25C is essential for oocyte maturation, because it represents the rate-limiting step in MPF activation (26). Cdc25C is phosphorylated by polo-like kinase through unknown upstream steps. In this work we analyze the functional regulation and phosphorylation pattern of the IP3R during oocyte maturation to better understand the role of cell cycle kinases in modulating IP3-dependent Ca2+ release.Open in a separate windowFIGURE 1.IP3-dependent Ca2+ release dynamics during maturation. A, kinase cascades driving Xenopus oocyte maturation. B, oocytes were injected with caged-IP3 and Oregan Green 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis 1 before imaging. Maturation was induced with progesterone, and cells were collected at different time points as indicated. Cells were imaged in line scan mode on a Zeiss LSM510 with the near UV 450 nm laser continuously on, at low intensity to produce a slow gradual IP3 rise. After imaging each cell was lysed and analyzed individually for the activation state of MAPK and MPF. MPF was assayed using an anti-phospho-Tyr-15-cdk1 antibody (arrow). Dephosphorylation is indicative of MPF activation. MAPK activation was detected using a phospho-specific MAPK antibody (arrowhead). Tubulin was the loading control (dash). C, percent of cells at each time point that either exhibit no release for the duration of the line scan (No Rel., black), puffs only (puffs, green), puffs followed by a wave (Puff-Wave, blue), or only a Ca2+ wave (Wave, red). For each time point n = 11–23 cells. D, amplitude of the first peak during the line scan as compared with the maximal Ca2+ signal. Mean ± S.E. (n = 9–18). E, latency until the first Ca2+ signal (Time to first peak) as compared with the time required to reach maximal signal (Time to Max). Mean ± S.E. (n = 9–18). For C–E: oocytes (Ooc); cells treated with progesterone that have not undergone GVBD at 2 or more hours after progesterone (p > 2); cells at GVBD and up to 0.5 h after GVBD (GVBD 0–0.5); cells from 0.5 to 2.5 h after GVBD (GVBD 0.5–2.5); fully mature eggs at 3 or more hours after GVBD (>3 egg).  相似文献   
970.
The failure of most non-ionic detergents to release patches of DRM (detergent-resistant membrane) at 37 degrees C undermines the claim that DRMs consist of lipid nanodomains that exist in an L(o) (liquid ordered) phase on the living cell surface. In the present study, we have shown that inclusion of cations (Mg(2+), K(+)) to mimic the intracellular environment stabilizes membranes during solubilization sufficiently to allow the isolation of DRMs at 37 degrees C, using either Triton X-100 or Brij 96. These DRMs are sensitive to chelation of cholesterol, maintain outside-out orientation of membrane glycoproteins, have prolonged (18 h) stability at 37 degrees C, and are vesicles or sheets up to 150-200 nm diameter. DRMs containing GPI (glycosylphosphatidylinositol)-anchored proteins PrP (prion protein) and Thy-1 can be separated by immunoaffinity isolation, in keeping with their separate organization and trafficking on the neuronal surface. Thy-1, but not PrP, DRMs are associated with actin. EM (electron microscopy) immunohistochemistry shows most PrP, and some Thy-1, to be clustered on DRMs, again maintaining their organization on the neuronal surface. For DRMs labelled for either protein, the bulk of the surface of the DRM is not labelled, indicating that the GPI-anchored protein is a minor component of its lipid domain. These 37 degrees C DRMs thus have properties expected of raft membrane, yet pose more questions about how proteins are organized within these nanodomains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号