首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1783篇
  免费   190篇
  1973篇
  2023年   15篇
  2022年   17篇
  2021年   26篇
  2020年   21篇
  2019年   30篇
  2018年   30篇
  2017年   22篇
  2016年   37篇
  2015年   66篇
  2014年   72篇
  2013年   84篇
  2012年   89篇
  2011年   112篇
  2010年   60篇
  2009年   59篇
  2008年   87篇
  2007年   62篇
  2006年   68篇
  2005年   53篇
  2004年   75篇
  2003年   64篇
  2002年   75篇
  2001年   60篇
  2000年   60篇
  1999年   53篇
  1998年   27篇
  1997年   14篇
  1996年   20篇
  1995年   21篇
  1994年   15篇
  1993年   17篇
  1992年   42篇
  1991年   30篇
  1990年   37篇
  1989年   30篇
  1988年   27篇
  1987年   27篇
  1986年   11篇
  1985年   20篇
  1984年   21篇
  1983年   20篇
  1982年   18篇
  1981年   15篇
  1980年   16篇
  1979年   16篇
  1978年   11篇
  1977年   12篇
  1971年   8篇
  1969年   9篇
  1967年   15篇
排序方式: 共有1973条查询结果,搜索用时 15 毫秒
991.
The extinct moa-nalos were very large, flightless waterfowl from the Hawaiian islands. We extracted, amplified and sequenced mitochondrial DNA from fossil moa-nalo bones to determine their systematic relationships and lend insight into their biogeographical history. The closest living relatives of these massive, goose-like birds are the familiar dabbling ducks (tribe Anatini). Moa-nalos, however, are not closely related to any one extant species, but represent an ancient lineage that colonized the Hawaiian islands and evolved flightlessness long before the emergence of the youngest island, Hawaii, from which they are absent. Ancient DNA yields a novel hypothesis for the relationships of these bizarre birds, whereas the evidence of phylogeny in morphological characters was obscured by the evolutionary transformation of a small, volant duck into a giant, terrestrial herbivore.  相似文献   
992.
The smallest molecular weight subunit (subunit IV), which contains no redox prosthetic group, is the only supernumerary subunit in the four-subunit Rhodobacter sphaeroides bc1 complex. This subunit is involved in Q binding and the structural integrity of the complex. When the cytochrome bc1 complex is photoaffinity labeled with [3H]azido-Q derivative, radioactivity is found in subunits IV and I (cytochrome b), indicating that these two subunits are responsible for Q binding in the complex. When the subunit IV gene (fbcQ) is deleted from the R. sphaeroides chromosome, the resulting strain (RSdeltaIV) requires a period of adaptation before the start of photosynthetic growth. The cytochrome bc1 complex in adapted RSdeltaIV chromatophores is labile to detergent treatment (60-75% inactivation), and shows a four-fold increase in the Km for Q2H2. The first two changes indicate a structural role of subunit IV; the third change supports its Q-binding function. Tryptophan-79 is important for structural and Q-binding functions of subunit IV. Subunit IV is overexpressed in Escherichia coli as a GST fusion protein using the constructed expression vector, pGEX/IV. Purified recombinant subunit IV is functionally active as it can restore the bc1 complex activity from the three-subunit core complex to the same level as that of wild-type or complement complex. Three regions in the subunit IV sequence, residues 86-109, 77-85, and 41-55, are essential for interaction with the core complex because deleting one of these regions yields a subunit completely or partially unable to restore cytochrome bc1 from the core complex.  相似文献   
993.
Because avian females are heterogametic, the reverse of mammals, avian sex chromosomes undergo significantly different patterns and numbers of DNA replications than do those in mammals. This makes the W (female-specific) and the Z chromosomes an excellent model system for the study of the replicative division hypothesis, which purports that DNA substitution rate is determined by the number of germline replications. The sex-specific chromosome in birds (the W) is predicted to change at the slowest rate of all avian chromosomes because it undergoes the fewest rounds of replication per unit of evolutionary time. Using published data on gametogenesis from a variety of sources, we estimated the ratio of male-to-female germline replications (c) in galliforms and anseriforms to be approximately 4.4. The value of c should predict the value of the ratio of male-to-female mutation rates (αm) if the replicative division hypothesis is true. Homologous DNA sequences including an intron and parts of two exons of the CHD gene were obtained from the W and the Z chromosomes in ostrich, sage grouse, canvasback duck, tundra swan, and snow goose. The exons show significantly different nucleotide composition from the introns, and the W-linked exons show evidence of relaxed constraint. The Z-linked intron is diverging ≈ 3.1 times faster than the W-linked intron. From this, αm was calculated to be approximately 4.1, with a confidence interval of 3.1 to 5.1. The data support the idea that the number of replicative divisions is a major determinant of substitution rate in the Eoavian genome. Received: 19 January 1999 / Accepted: 8 June 1999  相似文献   
994.
The function of the GTPase Rac1, a molecular switch transducing intracellular signals from growth factors, in differentiation of a specific cell type during early embryogenesis has not been investigated. To address the question, we used embryonic stem (ES) cells differentiated into cardiomyocytes, a model that faithfully recapitulates early stages of cardiogenesis. Overexpression in ES cells of a constitutively active Rac (RacV12) but not of an active mutant (RacL61D38), which does not activate the NADPH oxydase generating ROS, prevented MEF2C expression and severely compromised cardiac cell differentiation. This resulted in poor expression of ventricular myosin light chain 2 (MLC2v) and its lack of insertion into sarcomeres. Thus ES-derived cardiomyocytes featured impaired myofibrillogenesis and contractility. Overexpression of MEF2C or addition of catalase in the culture medium rescued the phenotype of racV12 cells. In contrast, RacV12 specifically expressed in ES-derived ventricular cells improved the propensity of cardioblasts to differentiate into beating cardiomyocytes. This was attributed to both a facilitation of myofibrillogenesis and a prolongation in their proliferation. The dominant negative mutant RacN17 early or lately expressed in ES-derived cells prevented myofibrillogenesis and in turn beating of cardiomyocytes. We thus suggest a stage-dependent function of the GTPase during early embryogenesis.  相似文献   
995.
Interleukin-15 (IL-15) has been shown to have anabolic effects on skeletal muscle in rodent studies conducted in vitro and in vivo. The mechanism of IL-15 action on muscle appears to be distinct from that of the well-characterized muscle anabolic factor insulin-like growth factor-I (IGF-I). IL-15 action has not been investigated in a human culture system nor in detail in primary skeletal myogenic cells. The purpose of this study was to compare the effects of IL-15 and IGF-I in primary human skeletal myogenic cells. Accretion of a major myofibrillar protein, myosin heavy chain (MHC), was used as a measure of muscle anabolism. We found that both growth factors induced increases in MHC accretion in primary human skeletal myogenic cultures; however, IL-15 and IGF-I actions were temporally distinct. IL-15 was more effective at stimulating MHC accretion when added to cultures after differentiation of myoblasts had occurred. In contrast, IGF-I was more effective at stimulating MHC accretion when added to cultures prior to differentiation of myoblasts. These results using a human system support recent findings from rodent models which indicate that the primary mode of IGF-I action on skeletal muscle anabolism is through stimulation of myogenic precursor cells, whereas the primary target of IL-15 action is the differentiated muscle fiber. Further, since clinical and experimental studies have shown IGF-I is not effective in preventing skeletal muscle wasting, the distinct mode of action of IL-15 suggests it may be of potential usefulness in the treatment of muscle wasting disorders.  相似文献   
996.
Maximal activation of NADPH oxidase requires formation of a complex between the p40(phox) and p67(phox) subunits via association of their PB1 domains. We have determined the crystal structure of the p40(phox)/p67(phox) PB1 heterodimer, which reveals that both domains have a beta grasp topology and that they bind in a front-to-back arrangement through conserved electrostatic interactions between an acidic OPCA motif on p40(phox) and basic residues in p67(phox). The structure enabled us to identify residues critical for heterodimerization among other members of the PB1 domain family, including the atypical protein kinase C zeta (PKC zeta) and its partners Par6 and p62 (ZIP, sequestosome). Both Par6 and p62 use their basic "back" to interact with the OPCA motif on the "front" of the PKC zeta. Besides heterodimeric interactions, some PB1 domains, like the p62 PB1, can make homotypic front-to-back arrays.  相似文献   
997.
Mutations in the Pax6 gene disrupt telencephalic development, resulting in a thin cortical plate, expansion of proliferative layers, and the absence of the olfactory bulb. The primary defect in the neuronal cell population of the developing cerebral cortex was analysed by using mouse chimeras containing a mixture of wild-type and Pax6-deficient cells. The chimeric analysis shows that Pax6 influences cellular activity throughout corticogenesis. At early stages, Pax6-deficient and wildtype cells segregate into exclusive patches, indicating an inability of different cell genotypes to interact. At later stages, cells are sorted further based on telencephalic domains. Pax6-deficient cells are specifically reduced in the mediocaudal domain of the dorsal telencephalon, indicating a role in regionalization. In addition, Pax6 regulates the process of radial migration of neuronal precursors. Loss of Pax6 particularly affects movement of neuronal precursors at the subventricular zone/intermediate zone boundary at a transitional migratory phase essential for entry into the intermediate zone. We suggest that the primary role of Pax6 is the continual regulation of cell surface properties responsible for both cellular identity and radial migration, defects of which cause regional cell sorting and abnormalities of migration in chimeras.  相似文献   
998.
Phosphonopyruvate hydrolase, a novel bacterial carbon-phosphorus bond cleavage enzyme, was purified to homogeneity by a series of chromatographic steps from cell extracts of a newly isolated environmental strain of Variovorax sp. Pal2. The enzyme was inducible in the presence of phosphonoalanine or phosphonopyruvate; unusually, its expression was independent of the phosphate status of the cell. The native enzyme had a molecular mass of 63 kDa with a subunit mass of 31.2 kDa. Activity of purified phosphonopyruvate hydrolase was Co2+-dependent and showed a pH optimum of 6.7-7.0. The enzyme had a Km of 0.53 mm for its sole substrate, phosphonopyruvate, and was inhibited by the analogues phosphonoformic acid, 3-phosphonopropionic acid, and hydroxymethylphosphonic acid. The nucleotide sequence of the phosphonopyruvate hydrolase structural gene indicated that it is a member of the phosphoenolpyruvate phosphomutase/isocitrate lyase superfamily with 41% identity at the amino acid level to the carbon-to-phosphorus bond-forming enzyme phosphoenolpyruvate phosphomutase from Tetrahymena pyriformis. Thus its apparently ancient evolutionary origins differ from those of each of the two carbon-phosphorus hydrolases that have been reported previously; phosphonoacetaldehyde hydrolase is a member of the haloacetate dehalogenase family, whereas phosphonoacetate hydrolase belongs to the alkaline phosphatase superfamily of zinc-dependent hydrolases. Phosphonopyruvate hydrolase is likely to be of considerable significance in global phosphorus cycling, because phosphonopyruvate is known to be a key intermediate in the formation of all naturally occurring compounds that contain the carbon-phosphorus bond.  相似文献   
999.
1000.
Long-term, high accuracy seawater temperature data sets are essential in studies assessing environmental changes that may alter coral reef communities. Located at the approximately the same latitude, the subsurface seawater temperature (S3T) off Discovery Bay, Jamaica (DBJ) and the U.S. Virgin Islands (USVI) had the same overall mean temperature. The USVI S3T during the winter months is approximately 0.5 degrees C warmer than DBJ, while May - July at DBJ is approximately 1 degrees C warmer than USVI S3T. With the passing of tropical storms in 1995 and 1997 in the USVI S3T dropped as much as 1.5 degrees C within a 20 hr period and did not revert to the previous temperature during that calendar year. Mean monthly S3T during 2000 and 2001 in the USVI was > 0.5 degrees C warmer than during similar periods in the early 1990s. Mean monthly S3T during 1999-2002 at DBJ was 0.27 degrees C cooler than during 1994-1995.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号