首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1929篇
  免费   257篇
  2022年   20篇
  2021年   47篇
  2020年   26篇
  2019年   28篇
  2018年   34篇
  2017年   20篇
  2016年   59篇
  2015年   57篇
  2014年   74篇
  2013年   78篇
  2012年   80篇
  2011年   78篇
  2010年   61篇
  2009年   55篇
  2008年   64篇
  2007年   85篇
  2006年   88篇
  2005年   88篇
  2004年   80篇
  2003年   50篇
  2002年   46篇
  2001年   39篇
  2000年   47篇
  1999年   40篇
  1998年   27篇
  1997年   18篇
  1996年   29篇
  1995年   17篇
  1994年   26篇
  1993年   27篇
  1992年   37篇
  1991年   40篇
  1990年   32篇
  1989年   35篇
  1988年   25篇
  1987年   37篇
  1986年   18篇
  1985年   29篇
  1984年   28篇
  1983年   23篇
  1982年   19篇
  1981年   21篇
  1980年   23篇
  1979年   22篇
  1978年   19篇
  1977年   28篇
  1976年   34篇
  1975年   22篇
  1974年   22篇
  1967年   16篇
排序方式: 共有2186条查询结果,搜索用时 62 毫秒
991.
QR Johnson  RB Nellas  T Shen 《Biochemistry》2012,51(31):6238-6245
Understanding how organic solvent-stable proteins can function in anhydrous and often complex solutions is essential for the study of the interaction of protein and molecular immiscible interfaces and the design of efficient industrial enzymes in nonaqueous solvents. Using an extremophilic lipase from Pseudomonas aeruginosa as an example, we investigated the conformational dynamics of an organic solvent-tolerant enzyme in complex solvent milieux. Four 100-ns molecular dynamics simulations of the lipase were performed in solvent systems: water, hexane, and two mixtures of hexane and water, 5% and 95% (w/w) hexane. Our results show a solvent-dependent structural change of the protein, especially in the region that regulates the admission of the substrate. We observed that the lipase is much less flexible in hexane than in aqueous solution or at the immiscible interface. Quantified by the size of the accessible channel, the lipase in water has a closed-gate conformation and no access to the active site, while in the hexane-containing systems, the lipase is at various degrees of open-gate state, with the immiscible interface setup being in the widely open conformation ensembles. The composition of explicit solvents in the access channel showed a significant influence on the conformational dynamics of the protein. Interestingly, the slowest step (bottleneck) of the hexane-induced conformational switch seems to be correlated with the slow dehydration dynamics of the channel.  相似文献   
992.
Streptococcus pneumoniae is a major human pathogen associated with many diseases worldwide. Capsular polysaccharides (CPSs) are the major virulence factor. The biosynthetic pathway of D-arabinitol, which is present in the CPSs of several S. pneumoniae serotypes, has never been identified. In this study, the genes abpA (previously known as abp1) and abpB (previously known as abp2), which have previously been reported to be responsible for nucleoside diphosphate (NDP)-D-arabinitol (the nucleotide-activated form of D-arabinitol) synthesis, were cloned. The enzyme products were overexpressed, purified, and analyzed for their respective activities. Novel products produced by AbpA- and AbpB-catalyzing reactions were detected by capillary electrophoresis, and the structures of the products were elucidated using electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. As a result, abpA was identified to be a D-xylulose-5-phosphate cytidylyltransferase-encoding gene, responsible for the transfer of CTP to D-xylulose-5-phosphate (D-Xlu-5-P) to form CDP-D-xylulose, and abpB was characterized to be a CDP-D-xylulose reductase-encoding gene, responsible for the conversion of CDP-D-xylulose to CDP-D-arabinitol as the final product. The kinetic parameters of AbpA for the substrates D-Xlu-5-P and CTP and those of AbpB for the substrate CDP-D-xylulose and the cofactors NADH or NADPH were measured, and the effects of temperature, pH, and cations on the two enzymes were analyzed. This study confirmed the involvement of the genes abpA and abpB and their products in the biosynthetic pathway of CDP-D-arabinitol.  相似文献   
993.

Background

Hypocretin peptides participate in the regulation of sleep-wake cycle while deficiency in hypocretin signaling and loss of hypocretin neurons are causative for narcolepsy-cataplexy. However, the mechanism responsible for alteration of the hypocretin system in narcolepsy-cataplexy and its relevance to other central hypersomnias remain unknown. Here we studied whether central hypersomnias can be associated with autoantibodies reacting with hypocretin-1 peptide present as immune complexes.

Methodology

Serum levels of free and dissociated (total) autoantibodies reacting with hypocretin-1 peptide were measured by enzyme-linked immunosorbent assay and analyzed with regard to clinical parameters in 82 subjects with narcolepsy-cataplexy, narcolepsy without cataplexy or idiopathic hypersomnia and were compared to 25 healthy controls.

Principal Findings

Serum levels of total but not free IgG autoantibodies against hypocretin-1 were increased in narcolepsy-cataplexy. Increased levels of complexed IgG autoantibodies against hypocretin-1 were found in all patients groups with a further increase in narcolepsy-cataplexy. Levels of total IgM hypocretin-1 autoantibodies were also elevated in all groups of patients. Increased levels of anti-idiotypic IgM autoantibodies reacting with hypocretin-1 IgG autoantibodies affinity purified from sera of subjects with narcolepsy-cataplexy were found in all three groups of patients. Disease duration correlated negatively with serum levels of hypocretin-1 IgG and IgM autoantibodies and with anti-idiotypic IgM autoantibodies.

Conclusion

Central hypersomnias and particularly narcolepsy-cataplexy are characterized by higher serum levels of autoantibodies directed against hypocretin-1 which are present as immune complexes most likely with anti-idiotypic autoantibodies suggesting their relevance to the mechanism of sleep-wake cycle regulation.  相似文献   
994.
The existence of cancer stem cells (CSCs) or stem-like cancer cells (SLCCs) is regarded as the cause of tumor formation and recurrence. However, the origin of such cells remains controversial with two competing hypotheses: CSCs are either transformed from tissue adult stem cells or dedifferentiated from transformed progenitor cells. Compelling evidence has determined the chromosomal aneuploidy to be one of the hallmarks of cancer cells, indicating genome instability plays an important role in tumorigenesis, for which CSCs are believed to be the initiator. To gain direct evidence that genomic instability is involved in the induction of SLCCs, we utilized multiple approaches to enhance genomic instability and monitored the percentage of SLCC in cultured cancer cells. Using side population (SP) cells as a marker for SLCC in human nasopharyngeal carcinoma (NPC) and CD133 for human neuroblastoma cells, we found that DNA damage inducers, UV and mitomycin C were capable of increasing SP cells in NPC CNE-2 and neuroblastoma SKN-SH cells. Likewise, either overexpression of a key regulator of cell cycle, Mad2, or knock down of Aurora B, an important kinase in mitosis, or Cdh1, a key E3 ligase in cell cycle, resulted in a significant increase of SP cells in CNE-2. More interestingly, enrichment of SP cells was observed in recurrent tumor tissues as compared with the primary tumor in the same NPC patients. Our study thus suggested that, beside transformation of tissue stem cells leading to CSC generation, genomic instability could be another potential mechanism resulting in SLCC formation, especially at tumor recurrence stage.  相似文献   
995.
The Ts65Dn mouse is trisomic for orthologs of about half the genes on Hsa21. A number of phenotypes in these trisomic mice parallel those in humans with trisomy 21 (Down syndrome), including cognitive deficits due to hippocampal malfunction that are sufficiently similar to human that “therapies” developed in Ts65Dn mice are making their way to human clinical trials. However, the impact of the model is limited by availability. Ts65Dn cannot be completely inbred and males are generally considered to be sterile. Females have few, small litters and they exhibit poor care of offspring, frequently abandoning entire litters. Here we report identification and selective breeding of rare fertile males from two working colonies of Ts65Dn mice. Trisomic offspring can be propagated by natural matings or by in vitro fertilization (IVF) to produce large cohorts of closely related siblings. The use of a robust euploid strain as recipients of fertilized embryos in IVF or as the female in natural matings greatly improves husbandry. Extra zygotes cultured to the blastocyst stage were used to create trisomic and euploid embryonic stem (ES) cells from littermates. We developed parameters for cryopreserving sperm from Ts65Dn males and used it to produce trisomic offspring by IVF. Use of cryopreserved sperm provides additional flexibility in the choice of oocyte donors from different genetic backgrounds, facilitating rapid production of complex crosses. This approach greatly increases the power of this important trisomic model to interrogate modifying effects of trisomic or disomic genes that contribute to trisomic phenotypes.  相似文献   
996.
Six amide and four urea derivatives of praziquantel were synthesized and tested for antischistosomal activity against juvenile and adults stages of Schistosoma mansoni in infected mice. Only one of these had significant activity against adult worms, but, unlike praziquantel, six of these had low to modest activity against juvenile worms. A praziquantel ketone derivative had the best combination of activity against juveniles and adults, but it had no effect on the motility of adult S. mansoni in ex vivo culture. Cytochrome P450 metabolic stability data support the hypothesis that the major trans-cyclohexanol metabolite of praziquantel plays an important role in the antischistosomal activity of this drug.  相似文献   
997.
Regiospecific and conformationally restrained analogs of melphalan and dl-2-NAM-7 have been synthesized and their affinities for the large neutral amino acid transporter (LAT1) of the blood–brain barrier have been determined to assess their potential for accessing the CNS via facilitated transport. Several analogs had Ki values in the range 2.1–8.5 μM with greater affinities than that of either l-phenylalanine (Ki = 11 μM) or melphalan (Ki = 55 μM), but lower than dl-2-NAM-7 (Ki = 0.08 μM). The results indicate that regiospecific positioning of the mustard moiety on the aromatic ring in these analogs is very important for optimal affinity for the large neutral amino acid transporter, and that conformational restriction of the dl-2-NAM-7 molecule in benzonorbornane and indane analogs leads to 25- to 60-fold loss, respectively, in affinity.  相似文献   
998.
Members of family Cymatiidae have an unusually long planktonic larval life stage (veligers) which allows them to be carried within ocean currents and becom  相似文献   
999.
Entamoeba histolytica is the causative agent of amebiasis, an infectious disease targeting the intestine and the liver in humans. Two types of intestinal infection are caused by this parasite: silent infection, which occurs in the majority of cases, and invasive disease, which affects 10% of infected persons. To understand the intestinal pathogenic process, several in vitro models, such as cell cultures, human tissue explants or human intestine xenografts in mice, have been employed. Nevertheless, our knowledge on the early steps of amebic intestinal infection and the molecules involved during human–parasite interaction is scarce, in part due to limitations in the experimental settings. In the present work, we took advantage of tissue engineering approaches to build a three‐dimensional (3D)‐intestinal model that is able to replicate the general characteristics of the human colon. This system consists of an epithelial layer that develops tight and adherens junctions, a mucus layer and a lamina propria‐like compartment made up of collagen containing macrophages and fibroblast. By means of microscopy imaging, omics assays and the evaluation of immune responses, we show a very dynamic interaction between E. histolytica and the 3D‐intestinal model. Our data highlight the importance of several virulence markers occurring in patients or in experimental models, but they also demonstrate the involvement of under described molecules and regulatory factors in the amoebic invasive process.  相似文献   
1000.
Mutualistic interactions with microbes have facilitated the adaptation of major eukaryotic lineages to restricted diet niches. Hence, ticks with their strictly blood‐feeding lifestyle are associated with intracellular bacterial symbionts through an essential B vitamin supplementation. In this study, examination of bacterial diversity in 25 tick species of the genus Amblyomma showed that three intracellular bacteria, Coxiella‐like endosymbionts (LE), Francisella‐LE and Rickettsia, are remarkably common. No other bacterium is as uniformly present in Amblyomma ticks. Almost all Amblyomma species were found to harbour a nutritive obligate symbiont, Coxiella‐LE or Francisella‐LE, that is able to synthesize B vitamins. However, despite the co‐evolved and obligate nature of these mutualistic interactions, the structure of microbiomes does not mirror the Amblyomma phylogeny, with a clear exclusion pattern between Coxiella‐LE and Francisella‐LE across tick species. Coxiella‐LE, but not Francisella‐LE, form evolutionarily stable associations with ticks, commonly leading to co‐cladogenesis. We further found evidence for symbiont replacements during the radiation of Amblyomma, with recent, and probably ongoing, invasions by Francisella‐LE and subsequent replacements of ancestral Coxiella‐LE through transient co‐infections. Nutritional symbiosis in Amblyomma ticks is thus not a stable evolutionary state, but instead arises from conflicting origins between unrelated but competing symbionts with similar metabolic capabilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号