首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   723篇
  免费   73篇
  2023年   7篇
  2022年   14篇
  2021年   38篇
  2020年   21篇
  2019年   23篇
  2018年   24篇
  2017年   14篇
  2016年   42篇
  2015年   33篇
  2014年   47篇
  2013年   45篇
  2012年   43篇
  2011年   35篇
  2010年   33篇
  2009年   26篇
  2008年   30篇
  2007年   33篇
  2006年   29篇
  2005年   36篇
  2004年   31篇
  2003年   16篇
  2002年   22篇
  2001年   6篇
  2000年   12篇
  1999年   5篇
  1998年   8篇
  1997年   4篇
  1996年   5篇
  1995年   7篇
  1993年   3篇
  1992年   5篇
  1991年   5篇
  1990年   6篇
  1988年   5篇
  1987年   3篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1978年   3篇
  1977年   6篇
  1976年   3篇
  1975年   3篇
  1973年   3篇
  1967年   4篇
  1965年   3篇
  1962年   3篇
  1959年   3篇
排序方式: 共有796条查询结果,搜索用时 15 毫秒
771.
We sought an explanation for epidemiological changes in Streptococcus agalactiae infections by investigating the link between ecological niches of the bacterium by determining the prevalence of 11 mobile genetic elements. The prevalence of nine of these elements differed significantly according to the human or bovine origin of the isolate. Correlating this distribution with the phylogeny obtained by multilocus sequence analysis, we observed that human isolates harboring GBSi1, a clear marker of the bovine niche, clustered in clonal complex 17. Our results are thus consistent with the emergence of this virulent human clone from a bovine ancestor.  相似文献   
772.
  1. In addition to global warming, aquatic ecosystems are currently facing multiple global changes among which include changes in nitrogen (N) loads. While several studies have investigated both temperature and N impacts on aquatic ecosystems independently, knowledge on their interactive effects remains scarce.
  2. In forested headwater streams, decomposition of leaf litter represents the main process ensuring the transfer of nutrients and energy to higher trophic levels, followed by autochthonous primary production, mainly ensured by phototrophic biofilms. The main aim of this study was to disentangle the independent and combined effects of temperature increase and nutrient availability on the relative importance of brown and green processes involved in stream functioning. We hypothesised that water temperature and nutrients would lead to a general increase in leaf-litter decomposition and primary production, but that the intensity of these effects would be largely modulated by competitive interactions arising between microorganisms as well as by the top-down control of microorganisms by macro-invertebrates. Macro-invertebrates would, in turn, be bottom-up controlled by microbial resources quality.
  3. To test these hypotheses, we conducted a 56-day experiment in artificial streams containing leaf litter, microbial decomposers and biofilm inoculum, and an assemblage of macro-invertebrates. Two water inorganic N:phosphorus (P) ratios (33 and 100, molar ratios) and two temperatures (ambient, +2°C) were manipulated, each treatment being replicated three times. Fungal and biofilm growth as well as leaf-litter decomposition and primary production were quantified. Top-down impacts of invertebrate primary consumers on brown and green compartments were evaluated using exclosures while bottom-up control was evaluated through the measurement of resource stoichiometry and fatty acid profiles, as well as quantification of macro-invertebrate growth and survival.
  4. Contrary to expectations, microbial decomposition was not significantly stimulated by nutrient or temperature manipulations, while primary production was only improved under ambient temperature. In the + 2°C treatment with high N:P, greater biofilm biomass was associated with lower fungal development, which indicates competition for nutrients in these conditions. Temperature increased macro-invertebrate growth and leaf-litter consumption, but this effect was independent of any improvement of basal resource quality, suggesting that temperature mediated changes in consumer metabolism and activity was the main mechanism involved.
  5. Most of our hypotheses that were based on simplified laboratory observations have been rejected in our semi-controlled mesocosms. Our study suggests that the complexity of biological communities might greatly affect the response of ecosystems to multiple stressors, and that interactions between organisms must be explicitly taken into account when investigating the impacts of global change on ecosystem functioning.
  相似文献   
773.
Development of an effective cytoplasmic delivery technique has remained an elusive goal for decades despite the success of pronuclear microinjection. Cytoplasmic injections are faster and easier than pronuclear injection and do not require the pronuclei to be visible; yet previous attempts to develop cytoplasmic injection have met with limited success. In this work we report a cytoplasmic delivery method termed intracellular electroporetic nanoinjection (IEN). IEN is unique in that it manipulates transgenes using electrical forces. The microelectromechanical system (MEMS) uses electrostatic charge to physically pick up transgenes and place them in the cytoplasm. The transgenes are then propelled through the cytoplasm and electroporated into the pronuclei using electrical pulses. Standard electroporation of whole embryos has not resulted in transgenic animals, but the MEMS device allows localized electroporation to occur within the cytoplasm for transgene delivery from the cytoplasm to the pronucleus. In this report we describe the principles which allow localized electroporation of the pronuclei including: the location of mouse pronuclei between 21 and 28 h post-hCG treatment, modeling data predicting the voltages needed for localized electroporation of pronuclei, and data on electric-field-driven movement of transgenes. We further report results of an IEN versus microinjection comparative study in which IEN produced transgenic pups with viability, transgene integration, and expression rates statistically comparable to microinjection. The ability to perform injections without visualizing or puncturing the pronuclei will widely benefit transgenic research, and will be particularly advantageous for the production of transgenic animals with embryos exhibiting reduced pronuclear visibility.  相似文献   
774.
775.
776.
The major cellular receptor for the primate immunodeficiency viruses is the CD4 molecule. As well as mediating virion attachment to the cell surface, CD4 is thought to activate the viral fusion pathway. CD4 is not, however, sufficient for viral entry; other molecules are probably involved, and in certain circumstances these may substitute for CD4. Viral tropism and cytopathogenicity are also influenced by receptor interactions.  相似文献   
777.
778.
The interpretation of slow inactivation in potassium channels has been strongly influenced by work on C-type inactivation in Shaker channels. Slow inactivation in Shaker and some other potassium channels can be dramatically modulated by the state of the pore, including mutations at outer pore residue T449, which altered inactivation kinetics up to 100-fold. KV2.1, another voltage-dependent potassium channel, exhibits a biophysically distinct inactivation mechanism with a U-shaped voltage-dependence and preferential closed-state inactivation, termed U-type inactivation. However, it remains to be demonstrated whether U-type and C-type inactivation have different molecular mechanisms. This study examines mutations at Y380 (homologous to Shaker T449) to investigate whether C-type and U-type inactivation have distinct molecular mechanisms, and whether C-type inactivation can occur at all in KV2.1. Y380 mutants do not introduce C-type inactivation into KV2.1 and have little effect on U-type inactivation of KV2.1. Interestingly, two of the mutants tested exhibit twofold faster recovery from inactivation compared to wild-type channels. The observation that mutations have little effect suggests KV2.1 lacks C-type inactivation as it exists in Shaker and that C-type and U-type inactivation have different molecular mechanisms. Kinetic modeling predicts that all mutants inactivate preferentially, but not exclusively, from partially activated closed states. Therefore, KV2.1 exhibits a single U-type inactivation process including some inactivation from open as well as closed states.  相似文献   
779.
780.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号