首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1073篇
  免费   60篇
  国内免费   3篇
  1136篇
  2023年   7篇
  2022年   35篇
  2021年   48篇
  2020年   36篇
  2019年   33篇
  2018年   34篇
  2017年   33篇
  2016年   41篇
  2015年   71篇
  2014年   66篇
  2013年   71篇
  2012年   98篇
  2011年   80篇
  2010年   47篇
  2009年   32篇
  2008年   47篇
  2007年   35篇
  2006年   58篇
  2005年   22篇
  2004年   32篇
  2003年   25篇
  2002年   30篇
  2001年   24篇
  2000年   8篇
  1999年   12篇
  1998年   8篇
  1997年   3篇
  1996年   9篇
  1995年   3篇
  1994年   8篇
  1993年   7篇
  1992年   9篇
  1991年   5篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   7篇
  1983年   2篇
  1982年   3篇
  1979年   3篇
  1975年   1篇
  1974年   2篇
  1970年   2篇
  1967年   1篇
  1963年   2篇
  1962年   1篇
  1960年   1篇
排序方式: 共有1136条查询结果,搜索用时 0 毫秒
71.
Journal of Plant Biochemistry and Biotechnology - Sweet corn has emerged as a popular vegetable worldwide. Commercial shrunken2 (sh2)-based sweet corn lacks lysine, tryptophan and provitamin-A,...  相似文献   
72.
Cannabinoids have been reported to be involved in affecting various biological functions through binding with cannabinoid receptors type 1 (CB1) and 2 (CB2). The present study was designed to investigate whether swallowing, an essential component of feeding behavior, is modulated after the administration of cannabinoid. The swallowing reflex evoked by the repetitive electrical stimulation of the superior laryngeal nerve in rats was recorded before and after the administration of the cannabinoid receptor agonist, WIN 55-212-2 (WIN), with or without CB1 or CB2 antagonist. The onset latency of the first swallow and the time intervals between swallows were analyzed. The onset latency and the intervals between swallows were shorter after the intravenous administration of WIN, and the strength of effect of WIN was dose-dependent. Although the intravenous administration of CB1 antagonist prior to intravenous administration of WIN blocked the effect of WIN, the administration of CB2 antagonist did not block the effect of WIN. The microinjection of the CB1 receptor antagonist directly into the nucleus tractus solitarius (NTS) prior to intravenous administration of WIN also blocked the effect of WIN. Immunofluorescence histochemistry was conducted to assess the co-localization of CB1 receptor immunoreactivity to glutamic acid decarboxylase 67 (GAD67) or glutamate in the NTS. CB1 receptor was co-localized more with GAD67 than glutamate in the NTS. These findings suggest that cannabinoids facilitate the swallowing reflex via CB1 receptors. Cannabinoids may attenuate the tonic inhibitory effect of GABA (gamma-aminobuteric acid) neurons in the central pattern generator for swallowing.  相似文献   
73.
Previously we showed a rapid and transient inhibition of gap junctional communication (GJC) by platelet-derived growth factor (PDGF) in T51B rat liver epithelial cells expressing wild-type platelet-derived growth factor β receptors (PDGFrβ). This action of PDGF correlated with the hyperphosphorylation of the gap junction protein connexin43 (Cx43) and required PDGFrβ tyrosine kinase activity, suggesting the participation of protein kinases and phosphatases many of which are activated by PDGF treatment. In the present study, two such kinases, namely protein kinase C (PKC) and mitogen-activated protein kinase (MAPK), are investigated for their possible involvement in PDGF-induced closure of junctional channels and Cx43-phosphorylation. Down-regulation of PKC-isoforms by 12-O-tetradecanoylphorbol-13-acetate or pretreatment with the PKC inhibitor calphostin C, completely blocked PDGF action on GJC and Cx43. Activation of MAPK correlated with PDGF-induced Cx43 phosphorylation, and prevention of MAPK activation by PD98059 eliminated the PDGF effects. Interestingly, elimination of GJC recovery by cycloheximide was associated with a sustained activated-MAPK level. Based on these results we postulate that the activation of PKC and MAPK are required in PDGF-mediated Cx43 phosphorylation and junctional closure. J. Cell. Physiol. 176:332–341, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
74.
Neuronal death pathways following hypoxia–ischaemia are sexually dimorphic, but the underlying mechanisms are unclear. We examined cell death mechanisms during OGD (oxygen-glucose deprivation) followed by Reox (reoxygenation) in segregated male (XY) and female (XX) mouse primary CGNs (cerebellar granule neurons) that are WT (wild-type) or Parp-1 [poly(ADP-ribose) polymerase 1] KO (knockout). Exposure of CGNs to OGD (1.5 h)/Reox (7 h) caused cell death in XY and XX neurons, but cell death during Reox was greater in XX neurons. ATP levels were significantly lower after OGD/Reox in WT-XX neurons than in XY neurons; this difference was eliminated in Parp-1 KO-XX neurons. AIF (apoptosis-inducing factor) was released from mitochondria and translocated to the nucleus by 1 h exclusively in WT-XY neurons. In contrast, there was a release of Cyt C (cytochrome C) from mitochondria in WT-XX and Parp-1 KO neurons of both sexes; delayed activation of caspase 3 was observed in the same three groups. Thus deletion of Parp-1 shunted cell death towards caspase 3-dependent apoptosis. Delayed activation of caspase 8 was also observed in all groups after OGD/Reox, but was much greater in XX neurons, and caspase 8 translocated to the nucleus in XX neurons only. Caspase 8 activation may contribute to increased XX neuronal death during Reox, via caspase 3 activation. Thus, OGD/Reox induces death of XY neurons via a PARP-1-AIF-dependent mechanism, but blockade of PARP-1-AIF pathway shifts neuronal death towards a caspase-dependent mechanism. In XX neurons, OGD/Reox caused prolonged depletion of ATP and delayed activation of caspase 8 and caspase 3, culminating in greater cell death during Reox.  相似文献   
75.
BACKGROUND: Primary melanoma of the urinary bladder is a rare neoplasm, and there have been no prior reports in which the initial diagnosis was made by urinary cytology. CASE: An 82-year-old woman presented with vaginal spotting, gross hematuria and dysuria. Voided urine cytology revealed malignant cells, several of which exhibited cytoplasmic melanin pigment and were accompanied by many macrophages also containing melanin. Cystoscopy revealed a darkly pigmented, polypoid mass at the bladder neck. Biopsy confirmed the diagnosis. CONCLUSION: Primary melanoma of the urinary bladder is rare. The diagnosis can be made on cytologic examination of voided urine if careful study of exfoliated malignant cells reveals cytoplasmic melanin pigment. Macrophages may also harbor melanin pigment, and their presence should alert the cytopathologist to search carefully for pigmented malignant cells. Clinical and radiologic studies are essential to rule out melanoma metastatic to the bladder.  相似文献   
76.
The platelet-derived growth factor (PDGF) mediates its cellular functions via activation of its receptor tyrosine kinase followed by the recruitment and activation of several signaling molecules. These signaling molecules then initiate specific signaling cascades, finally resulting in distinct physiological effects. To delineate the PDGF signaling pathway responsible for the disruption of gap junctional communication (GJC), wild-type PDGF receptor beta (PDGFRbeta) and a series of PDGFRbeta mutants were expressed in T51B rat liver epithelial cells. In cells expressing wild-type PDGFRbeta, PDGF induced disruption of GJC and phosphorylation of a gap junctional protein, connexin-43 (Cx43), which required activation of mitogen-activated protein kinase, although involvement of additional factors was also evident. In the F5 mutant lacking binding sites for phosphatidylinositol 3-kinase, GTPase-activating protein, SHP-2, and phospholipase Cgamma1 (PLCgamma1), PDGF induced mitogen-activated protein kinase, but failed to affect GJC or Cx43, indicating involvement of additional signals presumably initiated by one or more of the mutated binding sites. Examination of the single-site mutants revealed that PDGF effects were not mediated via a single signaling component. This was confirmed by the "add-back" mutants, which showed that restoration of either SHP-2 or PLCgamma1 binding was sufficient to propagate the GJC inhibitory actions of PDGF. Further analysis showed that activation of PLCgamma1 is involved in Cx43 phosphorylation, which surprisingly failed to correlate with GJC blockade. The results of our study demonstrate that PDGF-induced disruption of GJC can be mediated by multiple signaling pathways and requires participation of multiple components.  相似文献   
77.
Mitochondrial F(1)F(0)-ATPase normally synthesizes ATP in the heart, but under ischemic conditions this enzyme paradoxically causes ATP hydrolysis. Nonselective inhibitors of this enzyme (aurovertin, oligomycin) inhibit ATP synthesis in normal tissue but also inhibit ATP hydrolysis in ischemic myocardium. We characterized the profile of aurovertin and oligomycin in ischemic and nonischemic rat myocardium and compared this with the profile of BMS-199264, which only inhibits F(1)F(0)-ATP hydrolase activity. In isolated rat hearts, aurovertin (1-10 microM) and oligomycin (10 microM), at concentrations inhibiting ATPase activity, reduced ATP concentration and contractile function in the nonischemic heart but significantly reduced the rate of ATP depletion during ischemia. They also inhibited recovery of reperfusion ATP and contractile function, consistent with nonselective F(1)F(0)-ATPase inhibitory activity, which suggests that upon reperfusion, the hydrolase activity switches back to ATP synthesis. BMS-199264 inhibits F(1)F(0) hydrolase activity in submitochondrial particles with no effect on ATP synthase activity. BMS-199264 (1-10 microM) conserved ATP in rat hearts during ischemia while having no effect on preischemic contractile function or ATP concentration. Reperfusion ATP levels were replenished faster and necrosis was reduced by BMS-199264. ATP hydrolase activity ex vivo was selectively inhibited by BMS-199264. Therefore, excessive ATP hydrolysis by F(1)F(0)-ATPase contributes to the decline in cardiac energy reserve during ischemia and selective inhibition of ATP hydrolase activity can protect ischemic myocardium.  相似文献   
78.
A series of benzodiazepine-based inhibitors of mitochondrial F(1)F(0) ATP hydrolase were prepared and evaluated for their ability to selectively inhibit the enzyme in the forward direction. Compounds from this series showed excellent potency and selectivity for ATP hydrolase versus ATP synthase, suggesting a potentially beneficial profile useful for the treatment of ischemic heart disease.  相似文献   
79.
Infusion of donor antiviral T cells can provide protective immunity for recipients of hemopoietic progenitor cell transplants, but may cause graft-vs-host disease (GVHD). Current methods of separating antiviral T cells from the alloreactive T cells that produce GVHD are neither routine nor rapid. In a model of lethal murine CMV (MCMV) infection following MHC-mismatched bone marrow transplantation, infusion of MCMV-immune donor lymphocytes pretreated with the DNA cross-linking compound amotosalen prevented MCMV lethality without producing GVHD. Although 95% of mice receiving 30 x 10(6) pretreated donor lymphocytes survived beyond day +100 without MCMV disease or GVHD, all mice receiving equivalent numbers of untreated lymphocytes rapidly died of GVHD. In vitro, amotosalen blocked T cell proliferation without suppressing MCMV peptide-induced IFN-gamma production by MCMV-primed CD8(+) T cells. In vivo, pretreated lymphocytes reduced hepatic MCMV load by 4-log(10) and promoted full hemopoietic chimerism. Amotosalen-treated, MCMV tetramer-positive memory (CD44(high)) CD8(+) T cells persisted to day +100 following infusion, and expressed IFN-gamma when presented with viral peptide. Pretreated T cells were effective at preventing MCMV lethality over a wide range of concentrations. Thus, amotosalen treatment rapidly eliminates the GVHD activity of polyclonal T cells, while preserving long-term antiviral and graft facilitation effects, and may be clinically useful for routine adoptive immunotherapy.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号