首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4078篇
  免费   348篇
  2023年   21篇
  2022年   26篇
  2021年   60篇
  2020年   45篇
  2019年   51篇
  2018年   54篇
  2017年   58篇
  2016年   103篇
  2015年   187篇
  2014年   212篇
  2013年   205篇
  2012年   308篇
  2011年   294篇
  2010年   225篇
  2009年   173篇
  2008年   251篇
  2007年   225篇
  2006年   231篇
  2005年   213篇
  2004年   212篇
  2003年   200篇
  2002年   223篇
  2001年   31篇
  2000年   23篇
  1999年   44篇
  1998年   55篇
  1997年   44篇
  1996年   42篇
  1995年   37篇
  1994年   35篇
  1993年   43篇
  1992年   29篇
  1991年   31篇
  1990年   14篇
  1989年   38篇
  1988年   28篇
  1987年   18篇
  1986年   18篇
  1984年   22篇
  1983年   16篇
  1982年   25篇
  1981年   21篇
  1980年   15篇
  1979年   17篇
  1978年   20篇
  1977年   15篇
  1976年   14篇
  1974年   18篇
  1973年   15篇
  1970年   15篇
排序方式: 共有4426条查询结果,搜索用时 15 毫秒
971.
The existence of very potent, broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) offers the potential for prophylaxis against HIV-1 infection by passive immunization or gene therapy. Both routes permit the delivery of modified forms of IgGs. Smaller reagents are favored when considering ease of tissue penetration and the limited capacities of gene therapy vectors. Immunoadhesin (single-chain fragment variable [scFv]-Fc) forms of IgGs are one class of relatively small reagent that has been explored for delivery by adeno-associated virus. Here we investigated the neutralization potencies of immunoadhesins compared to those of their parent IgGs. For the antibodies VRC01, PG9, and PG16, the immunoadhesins showed modestly reduced potencies, likely reflecting reduced affinities compared to those of the parent IgG, and the VRC01 immunoadhesin formed dimers and multimers with reduced neutralization potencies. Although scFv forms of neutralizing antibodies may exhibit affinity reductions, they provide a means of building reagents with multiple activities. Attachment of the VRC01 scFv to PG16 IgG yielded a bispecific reagent whose neutralization activity combined activities from both parent antibodies. Although the neutralization activity due to each component was partially reduced, the combined reagent is attractive since fewer strains escaped neutralization.  相似文献   
972.
Within the Aspergillus parasiticus and A. flavus aflatoxin (AF) biosynthetic gene cluster the aflQ (ordA) and aflP (omtA) genes encode respectively an oxidoreductase and methyltransferase. These genes are required for the final steps in the conversion of sterigmatocystin (ST) to aflatoxin B(1) (AFB(1)). Aspergillus nidulans harbors a gene cluster that produces ST, as the aflQ and aflP orthologs are either non-functional or absent in the genome. Aspergillus ochraceoroseus produces both AF and ST, and it harbors an AF/ST biosynthetic gene cluster that is organized much like the A. nidulans ST cluster. The A. ochraceoroseus cluster also does not contain aflQ or aflP orthologs. However the ability of A. ochraceoroseus to produce AF would indicate that functional aflQ and aflP orthologs are present within the genome. Utilizing degenerate primers based on conserved regions of the A. flavus aflQ gene and an A. nidulans gene demonstrating the highest level of homology to aflQ, a putative aflQ ortholog was PCR amplified from A. ochraceoroseus genomic DNA. The A. ochraceoroseus aflQ ortholog demonstrated 57% amino acid identity to A. flavus AflQ. Transformation of an O-methylsterigmatocystin (OMST)-accumulating A. parasiticus aflQ mutant with the putative A. ochraceoroseus aflQ gene restored AF production. Although the aflQ gene does not reside in the AF/ST cluster it appears to be regulated in a manner similar to other A. ochraceoroseus AF/ST cluster genes. Phylogenetic analysis of AflQ and AflQ-like proteins from a number of ST- and AF-producing Aspergilli indicates that A. ochraceoroseus might be ancestral to A. nidulans and A. flavus.  相似文献   
973.
974.
975.
Iron is an essential element for life on earth, participating in a plethora of cellular processes where one-electron transfer reactions are required. Its essentiality, coupled to its scarcity in aqueous oxidative environments, has compelled living organisms to develop mechanisms that ensure an adequate iron supply, at times with disregard to long-term deleterious effects derived from iron accumulation. However, iron is an intrinsic producer of reactive oxygen species, and increased levels of iron promote neurotoxicity because of hydroxyl radical formation, which results in glutathione consumption, protein aggregation, lipid peroxidation and nucleic acid modification. Neurons from brain areas sensitive to degeneration accumulate iron with age and thus are subjected to an ever increasing oxidative stress with the accompanying cellular damage. The ability of these neurons to survive depends on the adaptive mechanisms developed to cope with the increasing oxidative load. Here, we describe the chemical and thermodynamic peculiarities of iron chemistry in living matter, review the components of iron homeostasis in neurons and elaborate on the mechanisms by which iron homeostasis is lost in Parkinson's disease, Alzheimer's disease and other diseases in which iron accumulation has been demonstrated.  相似文献   
976.
Haemochromatosis is a genetic disorder of iron overload resulting from loss-of-function mutations in genes coding for the iron-regulatory proteins HFE (human leucocyte antigen-like protein involved in iron homoeostasis), transferrin receptor 2, ferroportin, hepcidin and HJV (haemojuvelin). Recent studies have established the expression of all of the five genes in the retina, indicating their importance in retinal iron homoeostasis. Previously, we demonstrated that HJV is expressed in RPE (retinal pigment epithelium), the outer and inner nuclear layers and the ganglion cell layer. In the present paper, we report on the consequences of Hjv deletion on the retina in mice. Hjv-/- mice at ≥18 months of age had increased iron accumulation in the retina with marked morphological damage compared with age-matched controls; these changes were not found in younger mice. The retinal phenotype in Hjv-/- mice included hyperplasia of RPE. We isolated RPE cells from wild-type and Hjv-/- mice and examined their growth patterns. Hjv-/- RPE cells were less senescent and exhibited a hyperproliferative phenotype. Hjv-/- RPE cells also showed up-regulation of Slc7a11 (solute carrier family 7 member 11 gene), which encodes the 'transporter proper' subunit xCT in the heterodimeric amino acid transporter xCT/4F2hc (cystine/glutamate exchanger). BMP6 (bone morphogenetic protein 6) could not induce hepcidin expression in Hjv-/- RPE cells, confirming that retinal cells require HJV for induction of hepcidin via BMP6 signalling. HJV is a glycosylphosphatidylinositol-anchored protein, and the membrane-associated HJV is necessary for BMP6-mediated activation of hepcidin promoter in RPE cells. Taken together, these results confirm the biological importance of HJV in the regulation of iron homoeostasis in the retina and in RPE.  相似文献   
977.
The final step in the assembly of the ubiquinol-cytochrome c reductase or bc1 complex involves the insertion of the Rieske Fe/S cluster protein, Rip1. Maturation of Rip1 occurs within the mitochondrial matrix prior to its translocation across the inner membrane (IM) in a process mediated by the Bcs1 ATPase and subsequent insertion into the bc1 complex. Here we show that the matrix protein Mzm1 functions as a Rip1 chaperone, stabilizing Rip1 prior to the translocation step. In the absence of Mzm1, Rip1 is prone to either proteolytic degradation or temperature-induced aggregation. A series of Rip1 truncations were engineered to probe motifs necessary for Mzm1 interaction and Bcs1-mediated translocation of Rip1. The Mzm1 interaction with Rip1 persists in Rip1 variants lacking its transmembrane domain or containing only its C-terminal globular Fe/S domain. Replacement of the globular domain of Rip1 with that of the heterologous folded protein Grx3 abrogated Mzm1 interaction; however, appending the C-terminal 30 residues of Rip1 to the Rip1-Grx3 chimera restored Mzm1 interaction. The Rip1-Grx3 chimera and a Rip1 truncation containing only the N-terminal 92 residues each induced stabilization of the bc1:cytochrome oxidase supercomplex in a Bcs1-dependent manner. However, the Rip1 variants were not stably associated with the supercomplex. The induced supercomplex stabilization by the Rip1 N terminus was independent of Mzm1.  相似文献   
978.
The bisecting GlcNAc is transferred to the core mannose residue of complex or hybrid N-glycans on glycoproteins by the β1,4-N-acetylglucosaminyltransferase III (GlcNAcT-III) or MGAT3. The addition of the bisecting GlcNAc confers unique lectin recognition properties to N-glycans. Thus, LEC10 gain-of-function Chinese hamster ovary (CHO) cells selected for the acquisition of ricin resistance, carry N-glycans with a bisecting GlcNAc, which enhances the binding of the erythroagglutinin E-PHA, but reduces the binding of ricin and galectins-1, -3 and -8. The altered interaction with galactose-binding lectins suggests that the bisecting GlcNAc affects N-glycan conformation. LEC10 mutants expressing polyoma middle T antigen (PyMT) exhibit reduced growth factor signaling. Furthermore, PyMT-induced mammary tumors lacking MGAT3, progress more rapidly than tumors with the bisecting GlcNAc on N-glycans of cell surface glycoproteins. In recent years, evidence for a new paradigm of cell growth control has emerged involving regulation of cell surface residency of growth factor and cytokine receptors via interactions and cross-linking of their branched N-glycans with a lattice of galectin(s). Specific cross-linking of glycoprotein receptors in the lattice regulates their endocytosis, leading to effects on growth factor-induced signaling. This review will describe evidence that the bisecting GlcNAc of N-glycans regulates cellular signaling and tumor progression, apparently through modulating N-glycan/galectin interactions.  相似文献   
979.
Although there is in vivo evidence suggesting a role for glutathione in the metabolism and tissue distribution of vitamin C, no connection with the vitamin C transport systems has been reported. We show here that disruption of glutathione metabolism with buthionine-(S,R)-sulfoximine (BSO) produced a sustained blockade of ascorbic acid transport in rat hepatocytes and rat hepatoma cells. Rat hepatocytes expressed the Na(+)-coupled ascorbic acid transporter-1 (SVCT1), while hepatoma cells expressed the transporters SVCT1 and SVCT2. BSO-treated rat hepatoma cells showed a two order of magnitude decrease in SVCT1 and SVCT2 mRNA levels, undetectable SVCT1 and SVCT2 protein expression, and lacked the capacity to transport ascorbic acid, effects that were fully reversible on glutathione repletion. Interestingly, although SVCT1 mRNA levels remained unchanged in rat hepatocytes made glutathione deficient by in vivo BSO treatment, SVCT1 protein was absent from the plasma membrane and the cells lacked the capacity to transport ascorbic acid. The specificity of the BSO treatment was indicated by the finding that transport of oxidized vitamin C (dehydroascorbic acid) and glucose transporter expression were unaffected by BSO treatment. Moreover, glutathione depletion failed to affect ascorbic acid transport, and SVCT1 and SVCT2 expression in human hepatoma cells. Therefore, our data indicate an essential role for glutathione in controlling vitamin C metabolism in rat hepatocytes and rat hepatoma cells, two cell types capable of synthesizing ascorbic acid, by regulating the expression and subcellular localization of the transporters involved in the acquisition of ascorbic acid from extracellular sources, an effect not observed in human cells incapable of synthesizing ascorbic acid.  相似文献   
980.
Lipid peroxidation generates reactive aldehydes, most notably hydroxynonenal (HNE), which covalently bind amino acid residue side chains leading to protein inactivation and insolubility. Specific adducts of lipid peroxidation have been demonstrated in intimate association with the pathological lesions of Alzheimer disease (AD), suggesting that oxidative stress is a major component of AD pathogenesis. Some HNE-protein products result in protein crosslinking through a fluorescent compound similar to lipofuscin, linking lipid peroxidation and the lipofuscin accumulation that commonly occurs in post-mitotic cells such as neurons. In this study, brain tissue from AD and control patients was examined by immunocytochemistry and immunoelectron microscopy for evidence of HNE-crosslinking modifications of the type that should accumulate in the lipofuscin pathway. Strong labeling of granulovacuolar degeneration (GVD) and Hirano bodies was noted but lipofuscin did not contain this specific HNE-fluorophore. These findings directly implicate lipid crosslinking peroxidation products as accumulating not in the lesions or the lipofuscin pathways, but instead in a distinct pathway, GVD, that accumulates cytosolic proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号