首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197531篇
  免费   8674篇
  国内免费   7550篇
  213755篇
  2024年   216篇
  2023年   1452篇
  2022年   3244篇
  2021年   5476篇
  2020年   3580篇
  2019年   4375篇
  2018年   15021篇
  2017年   12889篇
  2016年   11365篇
  2015年   7214篇
  2014年   8129篇
  2013年   8593篇
  2012年   13818篇
  2011年   20818篇
  2010年   16684篇
  2009年   12491篇
  2008年   14918篇
  2007年   15785篇
  2006年   4611篇
  2005年   3815篇
  2004年   3861篇
  2003年   3524篇
  2002年   2965篇
  2001年   2252篇
  2000年   2017篇
  1999年   1864篇
  1998年   1024篇
  1997年   1158篇
  1996年   1026篇
  1995年   919篇
  1994年   948篇
  1993年   695篇
  1992年   1011篇
  1991年   875篇
  1990年   620篇
  1989年   566篇
  1988年   502篇
  1987年   424篇
  1986年   388篇
  1985年   390篇
  1984年   218篇
  1983年   214篇
  1982年   139篇
  1981年   114篇
  1980年   108篇
  1979年   115篇
  1978年   78篇
  1974年   74篇
  1972年   308篇
  1971年   316篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
972.
973.
Plant shoot phototropism is triggered by the formation of a light-driven auxin gradient leading to bending growth. The blue light receptor phototropin 1(phot1) senses light direction, but how this leads to auxin gradient formation and growth regulation remains poorly understood. Previous studies have suggested phot1’s role for regulated apoplastic acidification, but its relation to phototropin and hypocotyl phototropism is unclear. Herein, we show that blue light can cause phot1 to interact with...  相似文献   
974.
975.
充气和搅动对球形棕囊藻生长及囊体形成的影响   总被引:2,自引:1,他引:1  
王艳  王小冬  李韶山 《生态学报》2010,30(12):3368-3374
球形棕囊藻生活史中包含游离单细胞和球形囊体两种生活形态,但是实验室中培养的球形棕囊藻经常无法形成囊体。研究通过向培养基中泵入过滤空气,以及给培养基提供不同程度的搅动,研究了充气和搅动对球形棕囊藻生长及囊体形成的影响。充气和搅动均显著提高了囊体的数量,并且提高了囊体内细胞的生长速率。但是充气对于囊体直径及囊体内细胞密度并无显著影响。搅动则明显的提高了囊体直径和囊体内细胞数量。然而,尽管充气以及搅动有利于球形棕囊藻囊体的形成,但是培养的囊体直径依然小于自然海区中囊体的大小。  相似文献   
976.
Wu J  Wang HW  Wen Y 《生理科学进展》2007,38(2):181-183
脂肪组织不仅是能量储备场所,还是活跃的内分泌器官。近年来的研究已经阐明,脂肪组织可以分泌多种炎症因子,参与原发性炎症。因此阐明脂肪组织在炎症发生中的作用,将有助于重新认识一些疾病的发病机制,为疾病的防治提供新的思路。  相似文献   
977.
Coxiella burnetii is the etiological agent of the zoonotic disease Q fever, which is featured by its ability to replicate in acid vacuoles resembling the lysosomal network. One key virulence determinant of C. burnetii is the Dot/Icm system that transfers more than 150 effector proteins into host cells. These effectors function to construct the lysosome-like compartment permissive for bacterial replication, but the functions of most of these effectors remain elusive. In this study, we used an affinity tag purification mass spectrometry (AP-MS) approach to generate a C. burnetii-human protein-protein interaction (PPI) map involving 53 C. burnetii effectors and 3480 host proteins. This PPI map revealed that the C. burnetii effector CBU0425 (designated CirB) interacts with most subunits of the 20S core proteasome. We found that ectopically expressed CirB inhibits hydrolytic activity of the proteasome. In addition, overexpression of CirB in C. burnetii caused dramatic inhibition of proteasome activity in host cells, while knocking down CirB expression alleviated such inhibitory effects. Moreover, we showed that a region of CirB that spans residues 91–120 binds to the proteasome subunit PSMB5 (beta 5). Finally, PSMB5 knockdown promotes C. burnetii virulence, highlighting the importance of proteasome activity modulation during the course of C. burnetii infection.  相似文献   
978.
BackgroundCardiovascular disease (CVD) disproportionately affects Black adults in the United States. This is increasingly acknowledged to be due to inequitable distribution of health-promoting resources. One potential contributor is inequities in educational opportunities, although it is unclear what aspects of education are most salient. School racial segregation may affect cardiovascular health by increasing stress, constraining socioeconomic opportunities, and altering health behaviors. We investigated the association between school segregation and Black adults’ CVD risk.Methods and findingsWe leveraged a natural experiment created by quasi-random (i.e., arbitrary) timing of local court decisions since 1991 that released school districts from court-ordered desegregation. We used the Panel Study of Income Dynamics (PSID) (1991 to 2017), linked with district-level school segregation measures and desegregation court order status. The sample included 1,053 Black participants who ever resided in school districts that were under a court desegregation order in 1991. The exposure was mean school segregation during observed schooling years. Outcomes included several adult CVD risk factors and outcomes. We fitted standard ordinary least squares (OLS) multivariable linear regression models, then conducted instrumental variables (IV) analysis, using the proportion of schooling years spent in districts that had been released from court-ordered desegregation as an instrument. We adjusted for individual- and district-level preexposure confounders, birth year, and state fixed effects. In standard linear models, school segregation was associated with a lower probability of good self-rated health (−0.05 percentage points per SD of the segregation index; 95% CI: −0.08, −0.03; p < 0.001) and a higher probability of binge drinking (0.04 percentage points; 95% CI: 0.002, 0.07; p = 0.04) and heart disease (0.01 percentage points; 95% CI: 0.002, 0.15; p = 0.007). IV analyses also found that school segregation was associated with a lower probability of good self-rated health (−0.09 percentage points; 95% CI: −0.17, −0.02, p = 0.02) and a higher probability of binge drinking (0.17 percentage points; 95% CI: 0.04, 0.30, p = 0.008). For IV estimates, only binge drinking was robust to adjustments for multiple hypothesis testing. Limitations included self-reported outcomes and potential residual confounding and exposure misclassification.ConclusionsSchool segregation exposure in childhood may have longstanding impacts on Black adults’ cardiovascular health. Future research should replicate these analyses in larger samples and explore potential mechanisms. Given the recent rise in school segregation, this study has implications for policies and programs to address racial inequities in CVD.

Min Hee Kim and colleagues investigate the association between exposure to school racial segregation in childhood and long-term cardiovascular health among Black adults in the United States.  相似文献   
979.
980.
Deciduous and evergreen trees differ in their responses to drought and nitrogen (N) demand. Whether or not these functional types affect the role of the bacterial community in the N cycle during drought remains uncertain. Two deciduous tree species (Alnus cremastogyne, an N2‐fixing species, and Liquidambar formosana) and two evergreen trees (Cunninghamia lanceolata and Pinus massoniana) were used to assess factors in controlling rhizosphere soil bacterial community and N cycling functions. Photosynthetic rates and biomass production of plants, 16S rRNA sequencing and N‐cycling‐related genes of rhizosphere soil were measured. The relative abundance of the phyla Actinobacteria and Firmicutes was higher, and that of Proteobacteria, Acidobacteria, and Gemmatimondaetes was lower in rhizosphere soil of deciduous trees than that of evergreen. Beta‐diversity of bacterial community also significantly differed between the two types of trees. Deciduous trees showed significantly higher net photosynthetic rates and biomass production than evergreen species both at well water condition and short‐term drought. Root biomass was the most important factor in driving soil bacterial community and N‐cycling functions than total biomass and aboveground biomass. Furthermore, 44 bacteria genera with a decreasing response and 46 taxa showed an increased response along the root biomass gradient. Regarding N‐cycle‐related functional genes, copy numbers of ammonia‐oxidizing bacteria (AOB) and autotrophic ammonia‐oxidizing archaea (AOA), N2 fixation gene (nifH), and denitrification genes (nirK, nirS) were significantly higher in the soil of deciduous trees than in that of the evergreen. Structural equation models explained 50.2%, 47.6%, 48.6%, 49.4%, and 37.3% of the variability in copy numbers of nifH, AOB, AOA, nirK, and nirS, respectively, and revealed that root biomass had significant positive effects on copy numbers of all N‐cycle functional genes. In conclusion, root biomass played key roles in affecting bacterial community structure and soil N cycling. Our findings have important implications for our understanding of plants control over bacterial community and N‐cycling function in artificial forest ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号