首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8962篇
  免费   816篇
  国内免费   358篇
  10136篇
  2024年   12篇
  2023年   106篇
  2022年   232篇
  2021年   376篇
  2020年   197篇
  2019年   302篇
  2018年   300篇
  2017年   272篇
  2016年   345篇
  2015年   483篇
  2014年   510篇
  2013年   591篇
  2012年   737篇
  2011年   659篇
  2010年   435篇
  2009年   376篇
  2008年   479篇
  2007年   449篇
  2006年   395篇
  2005年   381篇
  2004年   293篇
  2003年   270篇
  2002年   297篇
  2001年   204篇
  2000年   255篇
  1999年   178篇
  1998年   79篇
  1997年   46篇
  1996年   57篇
  1995年   66篇
  1994年   51篇
  1993年   40篇
  1992年   79篇
  1991年   71篇
  1990年   70篇
  1989年   65篇
  1988年   53篇
  1987年   42篇
  1986年   45篇
  1985年   50篇
  1984年   29篇
  1983年   27篇
  1982年   16篇
  1981年   18篇
  1980年   10篇
  1979年   19篇
  1978年   13篇
  1977年   12篇
  1976年   8篇
  1972年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Molecular Biology Reports - Chitinases play the key role in hydrolysis of chitin, a huge organic carbon reservoir on earth, into monomeric sugars and their eventual conversion into valuable...  相似文献   
52.
Functional genomic studies and drug candidate testing both require high throughput, parallel experimentation strategies to screen for variable cellular behaviors. In this article we describe the use of an impedance sensing electrode array that is capable of sensing cell "presence" as well as the extent of cell (focal) attachment to the substrate. The signals provided by mouse fibroblasts on a sensing structure containing four different sized electrodes are reported. In the absence of cells, each electrode's impedance was found to depend as expected on electrode size and frequency. The impedance increased by several-fold when fibroblasts attached and spread out over time. More notably, the sensors also detected the cellular response to the protein kinase C inhibitor, H-7. H-7 inhibits actomyosin contractility; thereafter, the loss of focal adhesion complexes occurs. The sensors, in turn, detected an impedance decrease after H-7 addition and an increase in impedance after H-7 removal.  相似文献   
53.
54.
Human apolipoprotein (apo) E4 binds preferentially to very low-density lipoproteins (VLDLs), whereas apoE3 binds preferentially to high-density lipoproteins (HDLs), resulting in different plasma cholesterol levels for the two isoforms. To understand the molecular basis for this effect, we engineered the isolated apoE N-terminal domain (residues 1-191) and C-terminal domain (residues 192-299) together with a series of variants containing deletions in the C-terminal domain and assessed their lipid and lipoprotein binding properties. Both isoforms can bind to a phospholipid (PL)-stabilized triolein emulsion, and residues 261-299 are primarily responsible for this activity. ApoE4 exhibits better lipid binding ability than apoE3 as a consequence of a rearrangement involving the segment spanning residues 261-272 in the C-terminal domain. The strong lipid binding ability of apoE4 coupled with the VLDL particle surface being ~60% PL-covered is the basis for its preference for binding VLDL rather than HDL. ApoE4 binds much more strongly than apoE3 to VLDL but less strongly than apoE3 to HDL(3), consistent with apoE-lipid interactions being relatively unimportant for binding to HDL. The preference of apoE3 for binding to HDL(3) arises because binding is mediated primarily by interaction of the N-terminal helix bundle domain with the resident apolipoproteins that cover ~80% of the HDL(3) particle surface. Thus, the selectivity in the binding of apoE3 and apoE4 to HDL(3) and VLDL is dependent upon two factors: (1) the stronger lipid binding ability of apoE4 relative to that of apoE3 and (2) the differences in the nature of the surfaces of VLDL and HDL(3) particles, with the former being largely covered with PL and the latter with protein.  相似文献   
55.
Bioassay-guided fractionation of the chloroform-soluble fraction of Morus bombycis, using an in vitro PTP1B inhibitory assay led to the identification of three 2-arylbenzofurans, albafuran A (1), mulberrofuran W (2) and mulberrofuran D (6), along with three chalcone-derived Diels–Alder products, kuwanon J (3), kuwanon R (4), and kuwanon V (5). Compounds 16 showed remarkable inhibitory activity against PTP1B with IC50 values ranging from 2.7 to 13.8 μM. Inhibition kinetics were analyzed by Lineweaver–Burk plots, which suggested that compounds 16 inhibited PTP1B in a mixed-type manner. The present results indicate that the respective lipophilic and hydroxyl groups of 2-arylbenzofurans and chalcone-derived Diels–Alder products play an important role in inhibition of PTP1B.  相似文献   
56.
One of the first key steps in structural genomics is high-throughput expression and rapid screening to select highly soluble proteins, the preferred candidates for crystal production. Here we describe the methodology used at the Berkeley Structural Genomics Center (BSGC) for automated parallel expression and small-scale purification of fusion proteins using a 96-well format. Our robotic method includes cell lysis, soluble fraction separation and purification with affinity resins. For detection of His-tagged proteins in the soluble fractions and after affinity resin elution, a dot-blot procedure with an anti-His-antibody is used. The expression level and molecular mass of recombinant proteins are checked by SDS-PAGE. With this approach, we are able to obtain beneficial information to be used for large-scale protein expression and purification.  相似文献   
57.
Nucleotide excision repair (NER) is the only mechanism in humans to repair UV-induced DNA lesions such as pyrimidine (6-4) pyrimidone photoproducts and cyclobutane pyrimidine dimers (CPDs). In response to UV damage, the ataxia telangiectasia mutated and Rad3-related (ATR) kinase phosphorylates and activates several downstream effector proteins, such as p53 and XPA, to arrest cell cycle progression, stimulate DNA repair, or initiate apoptosis. However, following the completion of DNA repair, there must be active mechanisms that restore the cell to a prestressed homeostatic state. An important part of this recovery must include a process to reduce p53 and NER activity as well as to remove repair protein complexes from the DNA damage sites. Since activation of the damage response occurs in part through phosphorylation, phosphatases are obvious candidates as homeostatic regulators of the DNA damage and repair responses. Therefore, we investigated whether the serine/threonine wild-type p53-induced phosphatase 1 (WIP1/PPM1D) might regulate NER. WIP1 overexpression inhibits the kinetics of NER and CPD repair, whereas WIP1 depletion enhances NER kinetics and CPD repair. This NER suppression is dependent on WIP1 phosphatase activity, as phosphatase-dead WIP1 mutants failed to inhibit NER. Moreover, WIP1 suppresses the kinetics of UV-induced damage repair largely through effects on NER, as XPD-deficient cells are not further suppressed in repairing UV damage by overexpressed WIP1. Wip1 null mice quickly repair their CPD and undergo less UV-induced apoptosis than their wild-type counterparts. In vitro phosphatase assays identify XPA and XPC as two potential WIP1 targets in the NER pathway. Thus WIP1 may suppress NER kinetics by dephosphorylating and inactivating XPA and XPC and other NER proteins and regulators after UV-induced DNA damage is repaired.  相似文献   
58.
A progressive loss of neurons with age underlies a variety of debilitating neurological disorders, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), yet few effective treatments are currently available. The SIR2 gene promotes longevity in a variety of organisms and may underlie the health benefits of caloric restriction, a diet that delays aging and neurodegeneration in mammals. Here, we report that a human homologue of SIR2, SIRT1, is upregulated in mouse models for AD, ALS and in primary neurons challenged with neurotoxic insults. In cell-based models for AD/tauopathies and ALS, SIRT1 and resveratrol, a SIRT1-activating molecule, both promote neuronal survival. In the inducible p25 transgenic mouse, a model of AD and tauopathies, resveratrol reduced neurodegeneration in the hippocampus, prevented learning impairment, and decreased the acetylation of the known SIRT1 substrates PGC-1alpha and p53. Furthermore, injection of SIRT1 lentivirus in the hippocampus of p25 transgenic mice conferred significant protection against neurodegeneration. Thus, SIRT1 constitutes a unique molecular link between aging and human neurodegenerative disorders and provides a promising avenue for therapeutic intervention.  相似文献   
59.
60.
Some 2-amino-4,6-diarylpyrimidines 2 have been prepared from substituted benzylideneacetophenones and guanidine hydrochloride in the presence of alkali by conventional heating in alcoholic medium and microwave heating in solvent-free conditions. N-(2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl)-N′-(4′,6′-diarylpyrimidin-2′-yl)thioureas 4 have been synthesized by reaction of per-O-acetylated glucopyranosyl isothiocyanate 1 and substituted 2-amino-4,6-diarylpyrimidines 2. Two different methods have been used, namely, refluxing in anhydrous dioxane and solvent-free microwave-assisted coupling. The second procedure afforded higher yields in much shorter reaction times. The compounds 2 and 4 were tested for their antibacterial and antifungal activities in vitro against Staphylococcus epidermidis, Enterobacter aerogenes and Candida albicans by disc diffusion method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号