首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2736篇
  免费   266篇
  国内免费   345篇
  3347篇
  2024年   5篇
  2023年   42篇
  2022年   105篇
  2021年   163篇
  2020年   99篇
  2019年   145篇
  2018年   124篇
  2017年   100篇
  2016年   122篇
  2015年   161篇
  2014年   192篇
  2013年   180篇
  2012年   238篇
  2011年   201篇
  2010年   145篇
  2009年   157篇
  2008年   159篇
  2007年   125篇
  2006年   121篇
  2005年   110篇
  2004年   90篇
  2003年   87篇
  2002年   76篇
  2001年   57篇
  2000年   65篇
  1999年   49篇
  1998年   30篇
  1997年   18篇
  1996年   25篇
  1995年   20篇
  1994年   18篇
  1993年   8篇
  1992年   11篇
  1991年   13篇
  1990年   13篇
  1989年   9篇
  1988年   11篇
  1987年   9篇
  1986年   4篇
  1985年   6篇
  1984年   4篇
  1983年   6篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1974年   2篇
  1972年   2篇
  1970年   2篇
  1948年   1篇
排序方式: 共有3347条查询结果,搜索用时 55 毫秒
71.
72.
成功构建pET-24a-tscd质粒,实现Thermococcus sp.Strain B1001来源的环糊精酶(TsCDase)在Es-cherichia coli BL21(DE3)中表达.通过热处理和镍柱分离对重组TsCDase进行纯化.酶学性质研究表明,重组TsCDase的比活为1 208.04 U/mg,最适温度为90℃、最适pH值为5.5.重组酶TsCDase在85℃、90℃、95℃条件下的半衰期分别为180、120、30min.酶转化研究表明,以80 g/L β-环糊精为底物,当酶转化温度为90℃、反应pH值为5.5~6.0,加酶量为25 U/g,反应时间为4 h时,麦芽七糖产率为81.19%和85.95%,七糖占产物麦芽寡糖的比例为95.24%和92.92%.本研究结果为工业化制备麦芽七糖奠定良好基础.  相似文献   
73.
Long non-coding RNA (lncRNA) plays an important role in the renal inflammatory response caused by hyperuricaemia. However, the underlying molecular mechanisms through which lncRNA is involved in endothelial injury induced by hyperuricaemia remain unclear. In this study, we investigated the regulatory role of lncRNA-HOTAIR in high concentration of uric acid (HUA)–induced renal injury. We established hyperuricaemia mouse model and an in vitro uric acid (UA)–induced human umbilical vein endothelial cell (HUVEC) injury model. In HUA-treated HUVECs and hyperuricaemia mice, we observed increased HOTAIR and decreased miR-22 expression. The expression of pyroptosis-associated protein (NLRP3, Caspase-1, GSDMD-N, GSDMD-FL) was increased. The release of LDH, IL-1β and IL-18 in cell supernatants and the sera of model mice was also increased. The proliferation of HUVECs stimulated by HUA was significantly inhibited, and the number of TUNEL-positive cells in hyperuricaemia mouse kidney was increased. Bioinformatics analysis and luciferase reporter and RIP assays confirmed that HOTAIR promoted NLRP3 inflammasome activation by competitively binding miR-22. In gain- or loss-of-function experiments, we found that HOTAIR and NLRP3 overexpression or miR-22 knock down activated the NLRP3 inflammasome and promoted pyroptosis in HUA-treated HUVECs, while NLRP3 and HOTAIR knockdown or a miR-22 mimic exerted the opposite effects. Furthermore, in vivo experiments validated that HOTAIR knockdown alleviated renal inflammation in hyperuricaemia mice. In conclusion, we demonstrated that in hyperuricaemia, lncRNA-HOTAIR promotes endothelial cell pyroptosis by competitively binding miR-22 to regulate NLRP3 expression.  相似文献   
74.
75.
Light regulates ascorbic acid (AsA) synthesis, which increases in the light, presumably reflecting a need for antioxidants to detoxify reactive molecules produced during photosynthesis. Here, we examine this regulation in Arabidopsis thaliana and find that alterations in the protein levels of the AsA biosynthetic enzyme GDP-Man pyrophosphorylase (VTC1) are associated with changes in AsA contents in light and darkness. To find regulatory factors involved in AsA synthesis, we identified VTC1-interacting proteins by yeast two-hybrid screening of a cDNA library from etiolated seedlings. This screen identified the photomorphogenic factor COP9 signalosome subunit 5B (CSN5B), which interacted with the N terminus of VTC1 in yeast and plants. Gel filtration profiling showed that VTC1-CSN5B also associated with the COP9 signalosome complex, and this interaction promotes ubiquitination-dependent VTC1 degradation through the 26S proteasome pathway. Consistent with this, csn5b mutants showed very high AsA levels in both light and darkness. Also, a double mutant of csn5b with the partial loss-of-function mutant vtc1-1 contained AsA levels between those of vtc1-1 and csn5b, showing that CSN5B modulates AsA synthesis by affecting VTC1. In addition, the csn5b mutant showed higher tolerance to salt, indicating that CSN5B regulation of AsA synthesis affects the response to salt stress. Together, our data reveal a regulatory role of CSN5B in light-dark regulation of AsA synthesis.  相似文献   
76.
77.
78.
The present study was conducted to determine whether recombinant human β-defensin-3 (rHBD3) in the milk of transgenic goats has an anti-bacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Streptococcus agalactiae (S. agalactiae) that could cause mastitis. A HBD3 mammary-specific expression vector was transfected by electroporation into goat fetal fibroblasts which were used to produce fourteen healthy transgenic goats by somatic cell nuclear transfer. The expression level of rHBD3 in the milk of the six transgenic goats ranged from 98 to 121 µg/ml at 15 days of lactation, and was maintained at 90–111 µg/ml during the following 2 months. Milk samples from transgenic goats showed an obvious inhibitory activity against E. coli, S. aureus and S. agalactiae in vitro. The minimal inhibitory concentrations of rHBD3 in milk against E. coli, S. aureus and S. agalactiae were 9.5–10.5, 21.8–23.0 and 17.3–18.5 µg/mL, respectively, which was similar to those of the HBD3 standard (P>0.05). The in vivo anti-bacterial activities of rHBD3 in milk were examined by intramammary infusion of viable bacterial inoculums. We observed that 9/10 and 8/10 glands of non-transgenic goats infused with S. aureus and E. coli became infected. The mean numbers of viable bacteria went up to 2.9×103 and 95.4×103 CFU/ml at 48 h after infusion, respectively; the mean somatic cell counts (SCC) in infected glands reached up to 260.4×105 and 622.2×105 cells/ml, which were significantly higher than the SCC in uninfected goat glands. In contrast, no bacteria was presented in glands of transgenic goats and PBS-infused controls, and the SSC did not significantly change throughout the period. Moreover, the compositions and protein profiles of milk from transgenic and non-transgenic goats were identical. The present study demonstrated that HBD3 were an effective anti-bacterial protein to enhance the mastitis resistance of dairy animals.  相似文献   
79.
A number of genetic studies have suggested numerous susceptibility genes for dental caries over the past decade with few definite conclusions. The rapid accumulation of relevant information, along with the complex architecture of the disease, provides a challenging but also unique opportunity to review and integrate the heterogeneous data for follow-up validation and exploration. In this study, we collected and curated candidate genes from four major categories: association studies, linkage scans, gene expression analyses, and literature mining. Candidate genes were prioritized according to the magnitude of evidence related to dental caries. We then searched for dense modules enriched with the prioritized candidate genes through their protein-protein interactions (PPIs). We identified 23 modules comprising of 53 genes. Functional analyses of these 53 genes revealed three major clusters: cytokine network relevant genes, matrix metalloproteinases (MMPs) family, and transforming growth factor-beta (TGF-β) family, all of which have been previously implicated to play important roles in tooth development and carious lesions. Through our extensive data collection and an integrative application of gene prioritization and PPI network analyses, we built a dental caries-specific sub-network for the first time. Our study provided insights into the molecular mechanisms underlying dental caries. The framework we proposed in this work can be applied to other complex diseases.  相似文献   
80.
Journal of Mathematical Biology - We study an ecosystem of interacting species that are influenced by random environmental fluctuations. At any point in time, we can either harvest or seed...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号