全文获取类型
收费全文 | 12430篇 |
免费 | 950篇 |
国内免费 | 1098篇 |
专业分类
14478篇 |
出版年
2024年 | 46篇 |
2023年 | 219篇 |
2022年 | 479篇 |
2021年 | 784篇 |
2020年 | 502篇 |
2019年 | 572篇 |
2018年 | 584篇 |
2017年 | 422篇 |
2016年 | 551篇 |
2015年 | 809篇 |
2014年 | 893篇 |
2013年 | 975篇 |
2012年 | 1177篇 |
2011年 | 1008篇 |
2010年 | 610篇 |
2009年 | 569篇 |
2008年 | 642篇 |
2007年 | 557篇 |
2006年 | 463篇 |
2005年 | 389篇 |
2004年 | 333篇 |
2003年 | 285篇 |
2002年 | 235篇 |
2001年 | 174篇 |
2000年 | 172篇 |
1999年 | 163篇 |
1998年 | 115篇 |
1997年 | 124篇 |
1996年 | 73篇 |
1995年 | 81篇 |
1994年 | 87篇 |
1993年 | 52篇 |
1992年 | 56篇 |
1991年 | 43篇 |
1990年 | 43篇 |
1989年 | 42篇 |
1988年 | 32篇 |
1987年 | 22篇 |
1986年 | 18篇 |
1985年 | 27篇 |
1984年 | 11篇 |
1983年 | 10篇 |
1982年 | 9篇 |
1981年 | 3篇 |
1980年 | 4篇 |
1979年 | 5篇 |
1978年 | 2篇 |
1950年 | 1篇 |
1949年 | 1篇 |
1948年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
61.
62.
63.
Despite the importance of stem cells in plant and animal development, the common mechanisms of stem cell maintenance in both systems have remained elusive. Recently, the importance of hydrogen peroxide (H2O2) signaling in priming stem cell differentiation has been extensively studied in animals. Here, we show that different forms of reactive oxygen species (ROS) have antagonistic roles in plant stem cell regulation, which were established by distinct spatiotemporal patterns of ROS‐metabolizing enzymes. The superoxide anion () is markedly enriched in stem cells to activate WUSCHEL and maintain stemness, whereas H2O2 is more abundant in the differentiating peripheral zone to promote stem cell differentiation. Moreover, H2O2 negatively regulates biosynthesis in stem cells, and increasing H2O2 levels or scavenging leads to the termination of stem cells. Our results provide a mechanistic framework for ROS‐mediated control of plant stem cell fate and demonstrate that the balance between and H2O2 is key to stem cell maintenance and differentiation. 相似文献
64.
Li Wang Yun Xiao Yanyan Ping Jing Li Hongying Zhao Feng Li Jing Hu Hongyi Zhang Yulan Deng Jiawei Tian Xia Li 《PloS one》2014,9(8)
Cross-talk among abnormal pathways widely occurs in human cancer and generally leads to insensitivity to cancer treatment. Moreover, alterations in the abnormal pathways are not limited to single molecular level. Therefore, we proposed a strategy that integrates a large number of biological sources at multiple levels for systematic identification of cross-talk among risk pathways in cancer by random walk on protein interaction network. We applied the method to multi-Omics breast cancer data from The Cancer Genome Atlas (TCGA), including somatic mutation, DNA copy number, DNA methylation and gene expression profiles. We identified close cross-talk among many known cancer-related pathways with complex change patterns. Furthermore, we identified key genes (linkers) bridging these cross-talks and showed that these genes carried out consistent biological functions with the linked cross-talking pathways. Through identification of leader genes in each pathway, the architecture of cross-talking pathways was built. Notably, we observed that linkers cooperated with leaders to form the fundamentation of cross-talk of pathways which play core roles in deterioration of breast cancer. As an example, we observed that KRAS showed a direct connection to numerous cancer-related pathways, such as MAPK signaling pathway, suggesting that it may be a central communication hub. In summary, we offer an effective way to characterize complex cross-talk among disease pathways, which can be applied to other diseases and provide useful information for the treatment of cancer. 相似文献
65.
Matrine (MT), the effective component of Sophora flavescens Ait, has been shown to have anti-inflammation, immune-suppressive, anti-tumor, and anti-hepatic fibrosis activities. However, the pharmacological effects of MT still need to be strengthened due to its relatively low efficacy and short half-life. In the present study, we report a more effective thio derivative of MT, MD-1, and its inhibitory effects on the activation of hepatic stellate cells (HSCs) in both cell culture and animal models. Cytological experiments showed that MD-1 can inhibit the proliferation of HSC-T6 cells with a half-maximal inhibitory concentration (IC50) of 62 μmol/L. In addition, MD-1 more strongly inhibits the migration of HSC-T6 cells compared to MT and can more effectively induce G0/G1 arrest and apoptosis. Investigating the biological mechanisms underlying anti-hepatic fibrosis in the presence of MD-1, we found that MD-1 can bind the epidermal growth factor receptor (EGFR) on the surface of HSC-T6 cells, which can further inhibit the phosphorylation of EGFR and its downstream protein kinase B (Akt), resulting in decreased expression of cyclin D1 and eventual inhibition of the activation of HSC-T6 cells. Furthermore, in rats with dimethylnitrosamine (DMN)-induced hepatic fibrosis, MD-1 slowed the development and progression of hepatic fibrosis, protecting hepatic parenchymal cells and improving hepatic functions. Therefore, MD-1 is a potential drug for anti-hepatic fibrosis. 相似文献
66.
Although radiotherapy is effective in managing abdominal and pelvic malignant tumors, radiation enteropathy is still unavoidable. This disease severely affects the quality of life of cancer patients due to some refractory lesions, such as intestinal ischemia, mucositis, ulcer, necrosis or even perforation. Current drugs or prevailing therapies are committed to alleviating the symptoms induced by above lesions. But the efficacies achieved by these interventions are still not satisfactory, because the milieus for tissue regeneration are not distinctly improved. In recent years, regenerative therapy for radiation enteropathy by using mesenchymal stem cells is of public interests. Relevant results of preclinical and clinical studies suggest that this regenerative therapy will become an attractive tool in managing radiation enteropathy, because mesenchymal stem cells exhibit their pro-regenerative potentials for healing the injuries in both epithelium and endothelium, minimizing inflammation and protecting irradiated intestine against fibrogenesis through activating intrinsic repair actions. In spite of these encouraging results, whether mesenchymal stem cells promote tumor growth is still an issue of debate. On this basis, we will discuss the advances in anticancer therapy by using mesenchymal stem cells in this review after analyzing the pathogenesis of radiation enteropathy, introducing the advances in managing radiation enteropathy using regenerative therapy and exploring the putative actions by which mesenchymal stem cells repair intestinal injuries. At last, insights gained from the potential risks of mesenchymal stem cell-based therapy for radiation enteropathy patients may provide clinicians with an improved awareness in carrying out their studies. 相似文献
67.
68.
Zewu Li Lutao Du Zhaogang Dong Yongmei Yang Xin Zhang Lili Wang Juan Li Guixi Zheng Ailin Qu Chuanxin Wang 《PloS one》2015,10(1)
Zinc finger protein 217 (ZNF217) is essential for cell proliferation and has been implicated in tumorigenesis. However, its expression and exact roles in colorectal cancer (CRC) remain unclear. In this study, we demonstrated that ZNF217 expression was aberrantly upregulated in CRC tissues and associated with poor overall survival of CRC patients. In addition, we found that ZNF217 was a putative target of microRNA (miR)-203 using bioinformatics analysis and confirmed that using luciferase reporter assay. Moreover, in vitro knockdown of ZNF217 or enforced expression of miR-203 attenuated CRC cell proliferation, invasion and migration. Furthermore, combined treatment of ZNF217 siRNA and miR-203 exhibited synergistic inhibitory effects. Taken together, our results provide new evidences that ZNF217 has an oncogenic role in CRC and is regulated by miR-203, and open up the possibility of ZNF217- and miR-203-targeted therapy for CRC. 相似文献
69.
Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26 总被引:15,自引:0,他引:15
Li GQ Li ZF Yang WY Zhang Y He ZH Xu SC Singh RP Qu YY Xia XC 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2006,112(8):1434-1440
Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most devastating diseases in common wheat (Triticum aestivum L.) worldwide. The objectives of this study were to map a stripe rust resistance gene in Chinese wheat cultivar Chuanmai 42 using molecular markers and to investigate its allelism with Yr24 and Yr26. A total of 787 F2 plants and 186 F3 lines derived from a cross between resistant cultivar Chuanmai 42 and susceptible line Taichung 29 were used for resistance gene tagging. Also 197 F2 plants from the cross Chuanmai 42×Yr24/3*Avocet S and 726 F2 plants from Chuanmai 42×Yr26/3*Avocet S were employed for allelic test of the resistance genes. In all, 819 pairs of wheat SSR primers were used to test the two parents, as well as resistant and susceptible bulks. Subsequently, nine polymorphic markers were employed for genotyping the F2 and F3 populations. Results indicated that the stripe rust resistance in Chuanmai 42 was conferred by a single dominant gene, temporarily designated YrCH42, located close to the centromere of chromosome 1B and flanked by nine SSR markers Xwmc626, Xgwm273, Xgwm11, Xgwm18, Xbarc137, Xbarc187, Xgwm498, Xbarc240 and Xwmc216. The resistance gene was closely linked to Xgwm498 and Xbarc187 with genetic distances of 1.6 and 2.3 cM, respectively. The seedling tests with 26 PST isolates and allelic tests indicated that YrCH42, Yr24 and Yr26 are likely to be the same gene.G.Q. Li and Z.F. Li contributed equally to the work. 相似文献
70.
Ling Xu Xiujuan Qu Xuejun Hu Zhitu Zhu Ce Li Enze Li Yanju Ma Na Song Yunpeng Liu 《FEBS letters》2013
Gastric cancer cells are resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and the resistance mechanism is not fully understood. In human gastric cancer MGC803 and BGC823 cells, TRAIL induces insulin-like growth factor-1 receptor (IGF-1R) pathway activation. Treatment with IGF-1R inhibitor OSI-906 or small interfering RNAs against IGF-1R, prevents IGF-1R pathway activation and increases TRAIL-induced apoptosis. The TRAIL-induced IGF-1R pathway activation is promoted by IGF-1R translocation into lipid rafts. Moreover, the translocation of IGF-1R into lipid rafts is regulated by Casitas B-lineage lymphoma b (Cbl-b). Taken together, TRAIL-induced IGF-1R activation antagonizes TRAIL-induced apoptosis by Cbl-b-regulated distribution of IGF-1R in lipid rafts. 相似文献