首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4295篇
  免费   308篇
  国内免费   333篇
  4936篇
  2024年   7篇
  2023年   64篇
  2022年   152篇
  2021年   230篇
  2020年   143篇
  2019年   164篇
  2018年   187篇
  2017年   121篇
  2016年   171篇
  2015年   296篇
  2014年   296篇
  2013年   353篇
  2012年   405篇
  2011年   344篇
  2010年   185篇
  2009年   212篇
  2008年   253篇
  2007年   211篇
  2006年   181篇
  2005年   151篇
  2004年   131篇
  2003年   120篇
  2002年   89篇
  2001年   71篇
  2000年   62篇
  1999年   62篇
  1998年   33篇
  1997年   43篇
  1996年   21篇
  1995年   26篇
  1994年   17篇
  1993年   21篇
  1992年   19篇
  1991年   10篇
  1990年   19篇
  1989年   11篇
  1988年   16篇
  1987年   7篇
  1986年   8篇
  1985年   7篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1974年   1篇
  1969年   1篇
  1949年   1篇
  1948年   1篇
排序方式: 共有4936条查询结果,搜索用时 15 毫秒
991.
Present molecular dynamics simulations indicate that the methanol component in a methanol/water mixture is more likely to be trapped in a cyclic peptide nanotube (CPNT), while water molecules tend to be present at the channel mouths as transient guests. Channel water resides mainly between methanol and the CPNT wall, resulting in a distinct decrease in the H-bond number per channel methanol. Six designed CPNTs with different channel diameters and outer surface characteristics all possess distinct selectivity to methanol over water. Of these, the amphipathic 8?×?(AQ)4-CPNT exhibits the best performance. Results in this study provide basic information for the application of a CPNT to enrich methanol from a methanol/water mixture.
Graphical Abstract Typical overview of water and methanol molecular distribution in cyclic peptide nanotubes
  相似文献   
992.
Odorant-binding proteins (OBPs) play an important role as ligand-transfer filters in olfactory recognition in insects. (E)-β-farnesene (EBF) is the main component of the aphid alarm pheromone and could keep aphids away from crops to prevent damage. Computational insight into the molecular binding mode of EBF analogs containing a heterocycle based on the structure of Megoura viciae OBP 3 (MvicOBP3) was obtained by molecular docking and molecular dynamics simulations. The results showed that high affinity EBF analogs substituted with an aromatic ring present a unique binding conformation in the surface cavity of MvicOBP3. A long EBF chain was located inside the cavity and was surrounded by many hydrophobic residues, while the substituted aromatic ring was exposed to the outside due to limitations from the formation of multiple hydrogen bonds. However, the low activity EBF analogs displayed an exactly inverted binding pose, with EBF loaded on the external side of the protein cavity. The affinity of the recently synthesized EBF analogs containing a triazine ring was evaluated in silico based on the binding modes described above and in vitro through fluorescence competitive binding assay reported later. Compound N1 not only showed a similar binding conformation to that of the high affinity analogs but was also found to have a much higher docking score and binding affinity than the other analogs. In addition, the docking score results correlated well with the predicted logP values for these EBF analogs, suggesting highly hydrophobic interactions between the protein and ligand. These studies provide an in silico screening model for the binding affinity of EBF analogs in order to guide their rational design based on aphid OBPs.  相似文献   
993.
This work investigated interactions between calcium cations (Ca2+) and three common types of oxygen-based functional groups of concrete superplasticizers using density functional theory (DFT) calculations and all-atom molecular dynamics (MD) simulations. The three common types of oxygen-based functional groups were modeled as three hypothetical, low-molecular-weight organic molecules, each containing a methyl-terminated oxyethylene dimer and an adsorbing head of two oxygen-based functional groups, and are referred to as carboxylate, sulfonate, and phosphate groups, respectively, following the usual terminology in the field of concrete admixtures. Our DFT results show that the binding strength of the three groups with calcium cations follows (from high to low) phosphate>carboxylate>sulfonate, and both the electrophilic attack and the chemical reactivity of the three groups contribute significantly to the binding strength. The MD simulation results indicate that the adsorption of the three small molecules on the calcite (1 0 4) surface in aqueous solution shares a similar pattern in the sense that just two oxygen atoms of two adjacent anchor groups adsorb on the calcium atoms on the top layer of the crystal. The adsorption strength among the three types of functional groups follows the same order as the binding strength obtained from DFT calculations; both results corroborate a similar rule-of-thumb established by experiments. Furthermore, interactions of the three types of groups with water molecules suggest that strong hydrogen-bonding interactions exist in those systems.
Graphical abstract Binding of calcium cations with three different types of oxygen-based functional groups of superplasticizers?
  相似文献   
994.
Cordyceps cicadae is a medicinal fungus used in treating night sweat, childhood convulsions, vision improvement and pain. This study was designed to evaluate the anti‐diabetic activity of the crude polysaccharide (SHF) from the mycelium and body portion of Ccicadae. Diabetes mellitus was induced in the rat with a single intravenous injection of alloxan monohydrate (150 mg/kg). In other to evaluate the anti‐diabetic effects of Ccicadae polysaccharide in alloxan‐induced diabetic rats, the crude polysaccharide (SHF at 100, 200 and 400 mg/kg body weight) and glibenclamide were administered orally to diabetic rats for 30 days. Blood glucose level, total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL), high density lipoprotein (HDL), alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphate (ALP), creatinine (CREA), urea, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH) were determined. SHF showed significant reduction in blood glucose in diabetic rats. Treatment of diabetic rats also resulted an improvement in body weights, increased HDL, SOD and GSH, as well as decreased TC, TG, LDL, MDA, urea, CREA, ALT, AST and ALP. These results suggested that Ccicadae polysaccharide displayed anti‐hyperglycemic, anti‐hyperlipidemic and antioxidant activities and could be a promising therapeutic source in managing diabetes mellitus and its associated complications.  相似文献   
995.
Apocynum venetum L., belonging to the family Apocynaceae, is a popular medicinal plant, which is commonly used in the treatment of hypertension, neurasthenia, and hepatitis in China. In the present study, the total flavonoids (TFs) were prepared from the leaves of A. venetum, and its protective effects on carbon tetrachloride (CCl4)-induced hepatotoxicity in a cultured HepG2 cell line and in mice were investigated. Cell exposed to 0.4% CCl4 (v/v) for 6 h led to a significant decrease in cell viability, increased LDH leakage, and intracellular reactive oxygen species (ROS). CCl4 also induced cell marked apoptosis, which was accompanied by the loss of mitochondrial membrane potential (MMP). Pretreatment with TFs at concentrations of 25, 50, and 100 μg/mL effectively relieved CCl4-induced cellular damage in a dose-dependent manner. In vivo, TFs (100, 200, and 400 mg/kg BW) were administered via gavage daily for 14 days before CCl4 treatment. The high serum ALT and AST levels induced by CCl4 were dose-dependently suppressed by pretreatment of TFs (200 and 400 mg/kg BW). Histological analysis also supported the results obtained from serum assays. Furthermore, TFs could prevent CCl4-caused oxidative damage by decreasing the MDA formation and increasing antioxidant enzymes (CAT, SOD, GSH-Px) activities in liver tissues. In summary, both in vitro and in vivo data suggest that TFs, prepared from A. venetum, showed a remarkable hepatoprotective and antioxidant activity against CCl4-induced liver damage.  相似文献   
996.
Public interest in complementary and alternative medicine has been increased worldwide, due to its wide applications in cancer prevention and treatment. Cordycepin is one of the most common and crucial types of complementary and alternative medicine. Cordycepin (3′-deoxyadenosine), a derivative of adenosine, was first isolated from medicine drug Cordyceps militaris. Cordycepin has been widely used as one compound for antitumor, which has been found to exert antiangiogenic, anti-metastatic, and antiproliferative effects, as well as inducing apoptosis. However, the mechanism of its anti-tumor activity is not well known. This review will clarify anti-tumor mechanisms of Cordycepin, which regulate signaling pathways related with tumor growth and metastasis. Cordycepin inhibit tumor growth via upregulating tumor apoptosis, inducing cell cycle arrest and targeting cancer stem cells (CSCs). Cordycepin regulates tumor microenvironment via suppressing tumor metastasis-related pathways. Thus, Cordycepins may be one of important supplement or substitute medicine drug for cancer treatment.  相似文献   
997.
Sodium‐ion batteries (SIBs) are considered to be a promising alternative for large‐scale electricity storage. However, it is urgent to develop new anode materials with superior ultralong cycle life performance at high current rates. Herein, a low‐cost and large‐scalable sulfur‐doped carbon anode material that exhibits the best high‐rate cycle performance and the longest cycle life ever reported for carbon anodes is developed. The material delivers a reversible capacity of 142 mA h g?1 at a current rate up to 10 A g?1. After 10 000 cycles the capacity is remained at 126.5 mA h g?1; 89.1% of the initial value. Density functional theory computations demonstrate that the sulfur‐doped carbon has a strong binding affinity for sodium which promotes sodium storage. Meanwhile, the kinetics analysis identifies the capacitive charge storage as a large contributor to sodium storage, which favors ultrafast storage of sodium ions. These results demonstrate a new way to design carbon‐based SIBs anodes for next‐generation large‐scale electricity storage.  相似文献   
998.
Charge transport layers play an important role in determining the power conversion efficiencies (PCEs) of perovskite solar cells (PSCs). However, it has proven challenging to produce thin and compact charge transport layers via solution processing techniques. Herein, a hot substrate deposition method capable of improving the morphology of high‐coverage hole‐transport layers (HTLs) and electron‐transport layers (ETLs) is reported. PSC devices using HTLs deposited on a hot substrate show improvement in the open‐circuit voltage (Voc) from 1.041 to 1.070 V and the PCE from 17.00% to 18.01%. The overall device performance is then further enhanced with the hot substrate deposition of ETLs as the Voc and PCE reach 1.105 V and 19.16%, respectively. The improved performance can be explained by the decreased current leakage and series resistance, which are present in PSCs with rough and discontinuous HTLs and ETLs.  相似文献   
999.
Western Hubei is the most concentrated area of forest resources in Hubei Province, and the knowledge of the distribution characteristics of ecosystem carbon density is important to understand the regional characteristics of carbon density and its mechanism of formation. Carbon density and factors influencing different layers in the ecosystem were studied by using field data. The average carbon density of ecosystems in western Hubei was 159.05 t/hm2; the carbon density of different forest types in descending order was Abies fargesii forests (362.25 t/hm2), mixed broadleaf-conifer forests (154.13 t/hm2), broad-leaved forests (146.09 t/hm2), and coniferous forests (135.76 t/hm2), and ecosystem carbon density increased with increasing age. The carbon density of the arborous layer, shrub layer, and soil layer of A. fargesii forests was significant higher than that of the other forests (P < 0.05), indicating the carbon storage per unit area of A. fargesii forests, which grow at higher elevations, was the greatest. The carbon density in arborous layers of broad-leaved forests, mixed broadleaf-conifer forests, and coniferous forests was 39.29 t/hm2, 48.99 t/hm2, and 48.39 t/hm2, respectively. Those of the soil layer were 102.96 t/hm2, 100.97 t/hm2, and 82.37 t/hm2, respectively, and there were no significant differences among them. Among the three forest types, carbon density in the litter layer was greater than that of the shrub layer, which indicated the litter layer plays an important role in carbon storage. The carbon density of mixed broadleaf-conifer forests was greatest, excluding A. fargesii forests, in medium (58.71 t/hm2) and mature forests (79.66 t/hm2). Thus, the carbon sink of mixed broadleaf-conifer forests had more potential than the others at the medium and mature forest stage. The soil layer carbon density in different forests constituted 60.67—70.48% of the entire ecosystem, and was 1.70—2.62 times greater than that of the arborous layer. There are many factors influencing ecosystem carbon density, which result from the interaction of environmental and topographical factors. The main explanatory variables of carbon density of the region were altitude, precipitation, and canopy density. The vegetation and soil layer carbon density increased as altitude increased, and the rate of change for every vertical 100 m was 1.3 t/hm2 and 1.9 t/hm2, respectively (P < 0.05). Although the annual average precipitation only affected the carbon density of the vegetation, it increased to 4 t/hm2 (P < 0.01) when average precipitation was >100 mm.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号