首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14781篇
  免费   1527篇
  国内免费   1491篇
  17799篇
  2024年   46篇
  2023年   215篇
  2022年   525篇
  2021年   837篇
  2020年   611篇
  2019年   768篇
  2018年   760篇
  2017年   551篇
  2016年   734篇
  2015年   930篇
  2014年   1136篇
  2013年   1131篇
  2012年   1318篇
  2011年   1203篇
  2010年   717篇
  2009年   690篇
  2008年   749篇
  2007年   644篇
  2006年   515篇
  2005年   466篇
  2004年   484篇
  2003年   494篇
  2002年   439篇
  2001年   376篇
  2000年   287篇
  1999年   235篇
  1998年   156篇
  1997年   115篇
  1996年   122篇
  1995年   75篇
  1994年   78篇
  1993年   61篇
  1992年   59篇
  1991年   64篇
  1990年   53篇
  1989年   34篇
  1988年   28篇
  1987年   27篇
  1986年   18篇
  1985年   24篇
  1984年   5篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
111.
目的 比较多囊卵巢综合征(PCOS)患者与健康人群间肠道菌群的差异,为后续研究提供参考.方法 采用16SrDNA扩增子测序法对30例PCOS患者(PCOS组)和20例健康人(健康组)粪便标本中菌群结构进行分析,并比较两组之间的区别.结果 与健康组相比,PCOS组患者肠道菌群α多样性降低.PCOS组患者肠道厚壁菌门(Fi...  相似文献   
112.
113.
Bone loss (osteopenia) is a common complication in human solid tumour. In addition, after surgical treatment of gynaecological tumour, osteoporosis often occurs due to the withdrawal of oestrogen. The major characteristic of osteoporosis is the low bone mass with micro-architectural deteriorated bone tissue. And the main cause is the overactivation of osteoclastogenesis, which is one of the most important therapeutic targets. Inflammation could induce the interaction of RANKL/RANK, which is the promoter of osteoclastogenesis. Triptolide is derived from the traditional Chinese herb lei gong teng, presented multiple biological effects, including anti-cancer, anti-inflammation and immunosuppression. We hypothesized that triptolide could inhibits osteoclastogenesis by suppressing inflammation activation. In this study, we confirmed that triptolide could suppress RANKL-induced osteoclastogenesis in bone marrow mononuclear cells (BMMCs) and RAW264.7 cells and inhibited the osteoclast bone resorption functions. PI3K-AKT-NFATc1 pathway is one of the most important downstream pathways of RANKL-induced osteogenesis. The experiments in vitro indicated that triptolide suppresses the activation of PI3K-AKT-NFATc1 pathway and the target point located at the upstream of AKT because both NFATc1 overexpression and AKT phosphorylation could ameliorate the triptolide suppression effects. The expression of MDM2 was elevated, which demonstrated the MDM-p53-induced cell death might contribute to the osteoclastogenesis suppression. Ovariectomy-induced bone loss and inflammation activation were also found to be ameliorated in the experiments in vivo. In summary, the new effect of anti-cancer drug triptolide was demonstrated to be anti-osteoclastogenesis, and we demonstrated triptolide might be a promising therapy for bone loss caused by tumour.  相似文献   
114.
Cisplatin resistance is one of the main obstacles in the treatment of advanced nasopharyngeal carcinoma (NPC). AKR1C1 is a member of the Aldo-keto reductase superfamily (AKRs), which converts aldehydes and ketones to their corresponding alcohols and has been reported to be involved in chemotherapeutic resistance of multiple drugs. The expression and function of AKR1C1 in NPC have not been reported until now. The aim of this research was to investigate the expression of AKR1C1 and it is role in cisplatin resistance in NPC. AKR1C1 protein expression was detected by immunohistochemistry in human NPC tissues and by Western blot assays in NPC and immortalized nasopharyngeal epithelial cells. The effects of AKR1C1 knock-down by siRNA on proliferation, migration and invasion in NPC cells were evaluated by CCK8, wound healing and transwell assays. To evaluate the effects of AKR1C1 silencing on cisplatin sensitivity in NPC cells, CCK8 assays were used to detect cell proliferation, flow cytometry was used to detect cell cycle distribution, and flow cytometry and DAPI staining were used to detect cell apoptosis. AKR1C1 down-regulation was associated with advanced clinicopathological characters such as larger tumor size, more lymphatic nodes involvement, with metastasis and later clinical stages, while AKR1C1 down-regulation was a good prognostic factor for overall survival (OS) in NPC patients. In vitro study showed that AKR1C1 was not directly involved in the malignant biological behaviours such as proliferation, cell cycle progression and migration of NPC cells, whereas AKR1C1 knock-down could enhance cisplatin sensitivity of NPC cells. These results suggest that AKR1C1 is a potential marker for predicting cisplatin response and could serve as a molecular target to increase cisplatin sensitivity in NPC.  相似文献   
115.
116.
Leptin is well acknowledged as an anorexigenic hormone that plays an important role in feeding control. Hypothalamic GABA system plays a significant role in leptin regulation on feeding and metabolism control. However, the pharmacological relationship of leptin and GABA receptor is still obscure. Therefore, we investigated the effect of leptin or combined with baclofen on the food intake in fasted mice. We detected the changes in hypothalamic c‐Fos expression, hypothalamic TH, POMC and GAD67 expression, plasma insulin, POMC and GABA levels to demonstrate the mechanisms. We found that leptin inhibit fasting‐induced increased food intake and activated hypothalamic neurons. The inhibitory effect on food intake induced by leptin in fasted mice can be reversed by pretreatment with baclofen. Baclofen reversed leptin's inhibition on c‐Fos expression of PAMM in fasted mice. Therefore, these results indicate that leptin might inhibit fasting‐triggered activation of PVN neurons via presynaptic GABA synaptic functions which might be partially blocked by pharmacological activating GABA‐B. Our findings identify the role of leptin in the regulation of food intake.  相似文献   
117.
Myocardial infarction (MI) remains the leading cause of morbidity and mortality worldwide, and novel therapeutic targets still need to be investigated to alleviate myocardial injury and the ensuing maladaptive cardiac remodelling. Accumulating studies have indicated that lncRNA H19 might exert a crucial regulatory effect on cardiovascular disease. In this study, we aimed to explore the biological function and molecular mechanism of H19 in MI. To investigate the biological functions of H19, miRNA‐22‐3p and KDM3A, gain‐ and loss‐of‐function experiments were performed. In addition, bioinformatics analysis, dual‐luciferase reporter assays, RNA immunoprecipitation (RIP) assays, RNA pull‐down assays, quantitative RT‐PCR and Western blot analyses as well as rescue experiments were conducted to reveal an underlying competitive endogenous RNA (ceRNA) mechanism. We found that H19 was significantly down‐regulated after MI. Functionally, enforced H19 expression dramatically reduced infarct size, improved cardiac performance and alleviated cardiac fibrosis by mitigating myocardial apoptosis and decreasing inflammation. However, H19 knockdown resulted in the opposite effects. Bioinformatics analysis and dual‐luciferase assays revealed that, mechanistically, miR‐22‐3p was a direct target of H19, which was also confirmed by RIP and RNA pull‐down assays in primary cardiomyocytes. In addition, bioinformatics analysis and dual‐luciferase reporter assays also demonstrated that miRNA‐22‐3p directly targeted the KDM3A gene. Moreover, subsequent rescue experiments further verified that H19 regulated the expression of KDM3A to ameliorate MI‐induced myocardial injury in a miR‐22‐3p‐dependent manner. The present study revealed the critical role of the lncRNAH19/miR‐22‐3p/KDM3A pathway in MI. These findings suggest that H19 may act as a potential biomarker and therapeutic target for MI.  相似文献   
118.
Rational design and construction of bifunctional electrocatalysts with excellent activity and durability is imperative for water splitting. Herein, a novel top‐down strategy to realize a hierarchical branched Mo‐doped sulfide/phosphide heterostructure (Mo‐Ni3S2/NixPy hollow nanorods), by partially phosphating Mo‐Ni3S2/NF flower clusters, is proposed. Benefitting from the optimized electronic structure configuration, hierarchical branched hollow nanorod structure, and abundant heterogeneous interfaces, the as‐obtained multisite Mo‐Ni3S2/NixPy/NF electrode has remarkable stability and bifunctional electrocatalytic activity in the hydrogen evolution reaction (HER)/oxygen evolution reaction (OER) in 1 m KOH solutions. It possesses an extremely low overpotential of 238 mV at the current density of 50 mA cm?2 for OER. Importantly, when assembled as anode and cathode simultaneously, it merely requires an ultralow cell voltage of 1.46 V to achieve the current density of 10 mA cm?2, with excellent durability for over 72 h, outperforming most of the reported Ni‐based bifunctional materials. Density functional theory results further confirm that the doped heterostructure can synergistically optimize Gibbs free energies of H and O‐containing intermediates (OH*, O*, and OOH*) during HER and OER processes, thus accelerating the catalytic kinetics of electrochemical water splitting. This work demonstrates the importance of the rational combination of metal doping and interface engineering for advanced catalytic materials.  相似文献   
119.
As performance of halide perovskite devices progresses, the device structure becomes more complex with more layers. Molecular interfacial structures between different layers play an increasingly important role in determining the overall performance in a halide perovskite device. However, current understanding of such interfacial structures at a molecular level nondestructively is limited, partially due to a lack of appropriate analytical tools to probe buried interfacial molecular structures in situ. Here, sum frequency generation (SFG) vibrational spectroscopy, a state‐of‐the‐art nonlinear interface sensitive spectroscopy, is introduced to the halide perovskite research community and is presented as a powerful tool to understand molecule behavior at buried halide perovskite interfaces in situ. It is found that interfacial molecular orientations revealed by SFG can be directly correlated to halide perovskite device performance. Here how SFG can examine molecular structures (e.g., orientations) at the perovskite/hole transporting layer and perovskite/electron transporting layer interfaces is discussed. This will promote the use of SFG to investigate molecular structures of buried interfaces in various halide perovskite materials and devices in situ nondestructively with a sub‐monolayer interface sensitivity. Such research will help to elucidate structure–function relationships of buried interfaces, aiding in the rational design/development of halide perovskite materials/devices with improved performance.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号