首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   969篇
  免费   69篇
  国内免费   70篇
  1108篇
  2024年   2篇
  2023年   14篇
  2022年   40篇
  2021年   61篇
  2020年   46篇
  2019年   48篇
  2018年   43篇
  2017年   32篇
  2016年   61篇
  2015年   52篇
  2014年   76篇
  2013年   85篇
  2012年   89篇
  2011年   76篇
  2010年   55篇
  2009年   56篇
  2008年   60篇
  2007年   37篇
  2006年   37篇
  2005年   19篇
  2004年   23篇
  2003年   18篇
  2002年   3篇
  2001年   14篇
  2000年   6篇
  1999年   15篇
  1998年   3篇
  1997年   1篇
  1996年   7篇
  1995年   2篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有1108条查询结果,搜索用时 15 毫秒
131.
Yang L  Ding Y  Chen Y  Zhang S  Huo C  Wang Y  Yu J  Zhang P  Na H  Zhang H  Ma Y  Liu P 《Journal of lipid research》2012,53(7):1245-1253
Lipid droplets are cellular organelles that consists of a neutral lipid core covered by a monolayer of phospholipids and many proteins. They are thought to function in the storage, transport, and metabolism of lipids, in signaling, and as a specialized microenvironment for metabolism in most types of cells from prokaryotic to eukaryotic organisms. Lipid droplets have received a lot of attention in the last 10 years as they are linked to the progression of many metabolic diseases and hold great potential for the development of neutral lipid-derived products, such as biofuels, food supplements, hormones, and medicines. Proteomic analysis of lipid droplets has yielded a comprehensive catalog of lipid droplet proteins, shedding light on the function of this organelle and providing evidence that its function is conserved from bacteria to man. This review summarizes many of the proteomic studies on lipid droplets from a wide range of organisms, providing an evolutionary perspective on this organelle.  相似文献   
132.
Paenibacillus polymyxa SQR-21, which is antagonistic against Fusarium oxysporum, is used as a biocontrol agent and, when mixed with organic substances for solid fermentation, produces a bioorganic fertilizer. The spores of P. polymyxa prepared at different temperatures were characterized with respect to the dipicolinic acid content, heat resistance, fatty acid composition and germination. Spores prepared at 37°C showed higher heat resistance than those prepared at 25 and 30°C. However, the germination rate was negatively correlated with the sporulation temperature. The maximum germination rate of the spores prepared at 25°C was 1.3-times higher than the spores prepared at 30°C. The sporulation temperature thus affects the resistance and germination properties of P. polymyxa spores. These results are useful for the production of improved bio-organic fertilizer.  相似文献   
133.
Huo L  Fielding AJ  Chen Y  Li T  Iwaki H  Hosler JP  Chen L  Hasegawa Y  Que L  Liu A 《Biochemistry》2012,51(29):5811-5821
The previously reported crystal structures of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) show a five-coordinate Zn(II)(His)(3)(Asp)(OH(2)) active site. The water ligand is H-bonded to a conserved His228 residue adjacent to the metal center in ACMSD from Pseudomonas fluorescens (PfACMSD). Site-directed mutagenesis of His228 to tyrosine and glycine in this study results in a complete or significant loss of activity. Metal analysis shows that H228Y and H228G contain iron rather than zinc, indicating that this residue plays a role in the metal selectivity of the protein. As-isolated H228Y displays a blue color, which is not seen in wild-type ACMSD. Quinone staining and resonance Raman analyses indicate that the blue color originates from Fe(III)-tyrosinate ligand-to-metal charge transfer. Co(II)-substituted H228Y ACMSD is brown in color and exhibits an electron paramagnetic resonance spectrum showing a high-spin Co(II) center with a well-resolved (59)Co (I = 7/2) eight-line hyperfine splitting pattern. The X-ray crystal structures of as-isolated Fe-H228Y (2.8 ?) and Co-substituted (2.4 ?) and Zn-substituted H228Y (2.0 ? resolution) support the spectroscopic assignment of metal ligation of the Tyr228 residue. The crystal structure of Zn-H228G (2.6 ?) was also determined. These four structures show that the water ligand present in WT Zn-ACMSD is either missing (Fe-H228Y, Co-H228Y, and Zn-H228G) or disrupted (Zn-H228Y) in response to the His228 mutation. Together, these results highlight the importance of His228 for PfACMSD's metal specificity as well as maintaining a water molecule as a ligand of the metal center. His228 is thus proposed to play a role in activating the metal-bound water ligand for subsequent nucleophilic attack on the substrate.  相似文献   
134.

Background

Liver injuries are important medical problems that require effective therapy. Stem cell or hepatocyte transplantation has the potential to restore function of the damaged liver and ameliorate injury. However, the regulatory factors crucial for the repair and regeneration after cell transplantation have not been fully characterized. Our study investigated the effects and the expression of the regulatory factors in mouse models of acute liver injury either transplanted with the induced pluripotent stem cells (iPS) or the hepatocytes that differentiated from iPS cells (iHL).

Methods/Principal Findings

Mice received CCl4 injection and were randomized to receive vehicle, iPS, or iHL transfusions vial tail veins and were observed for 24, 48 or 72 hours. The group of mice with iPS transplantation performed better than the group of mice receiving iHL in reducing the serum alanine aminotransferase, aspartate aminotransferase, and liver necrosis areas at 24 hours after CCl4 injury. Moreover, iPS significantly increased the numbers of proliferating hepatocytes at 48 hours. Cytokine array identified that chemokine IP-10 could be the potential regulatory factor that ameliorates liver injury. Further studies revealed that iPS secreted IP-10 in vitro and transfusion of iPS increased IP-10 protein and mRNA expressions in the injured livers in vivo. The primary hepatocytes and non-parenchyma cells were isolated from normal and injured livers. Hepatocytes from injured livers that received iPS treatment expressed more IP-10 mRNA than their non-hepatocyte counter-parts. In addition, animal studies revealed that administration of recombinant IP-10 (rIP-10) effectively reduced liver injuries while IP-10-neutralizing antibody attenuated the protective effects of iPS and decreased hepatocyte proliferation. Both iPS and rIP-10 significantly reduced the 72-hour mortality rate in mice that received multiple CCl4-injuries.

Conclusions/Significance

These findings suggested that IP-10 may have an important regulatory role in facilitating the repair and regeneration of injured liver after iPS transplantation.  相似文献   
135.
The ND18 strain of Barley stripe mosaic virus (BSMV) infects several lines of Brachypodium distachyon, a recently developed model system for genomics research in cereals. Among the inbred lines tested, Bd3-1 is highly resistant at 20 to 25 °C, whereas Bd21 is susceptible and infection results in an intense mosaic phenotype accompanied by high levels of replicating virus. We generated an F(6:7) recombinant inbred line (RIL) population from a cross between Bd3-1 and Bd21 and used the RILs, and an F(2) population of a second Bd21 × Bd3-1 cross to evaluate the inheritance of resistance. The results indicate that resistance segregates as expected for a single dominant gene, which we have designated Barley stripe mosaic virus resistance 1 (Bsr1). We constructed a genetic linkage map of the RIL population using SNP markers to map this gene to within 705 Kb of the distal end of the top of chromosome 3. Additional CAPS and Indel markers were used to fine map Bsr1 to a 23 Kb interval containing five putative genes. Our study demonstrates the power of using RILs to rapidly map the genetic determinants of BSMV resistance in Brachypodium. Moreover, the RILs and their associated genetic map, when combined with the complete genomic sequence of Brachypodium, provide new resources for genetic analyses of many other traits.  相似文献   
136.
Although III–V compound semiconductor multi‐junction cells show the highest efficiency among all types of solar cells, their cost is quite high due to expensive substrates, long epitaxial growth and complex balance of system components. To reduce the cost, ultra‐thin films with advanced light management are desired. Here effective light trapping in freestanding thin film nanopyramid arrays is demonstrated and multiple‐times light path enhancement is realized, where only 160 nm thick GaAs with nanopyramid structures is equivalent to a 1 μm thick planar film. The GaAs nanopyramids are fabricated using a combination of nanosphere lithography, nanopyramid metal organic chemical vapor deposition (MOCVD) growth, and gas‐phase substrate removal processes. Excellent optical absorption is demonstrated over a broad range of wavelengths, at various incident angles and at large‐curvature bending. Compared to an equally thick planar control film, the overall number of photons absorbed is increased by about 100% at various incident angles due to significant antireflection and light trapping effects. By implementing these nanopyramid structures, III–V material usage and deposition time can be significantly reduced to produce high‐efficiency, low‐cost thin film III–V solar cells.  相似文献   
137.
Chiu CD  Chen TY  Chin LT  Shen CC  Huo J  Ma SY  Chen HM  Chu CH 《Proteomics》2012,12(1):113-123
Intracerebral hemorrhage (ICH) is associated with high mortality and disability, and hyperglycemia worsens the clinical and neurological outcomes of patients with ICH. In this study, we utilized proteomic approaches to investigate the role of hyperglycemia in ICH. Hyperglycemia was induced by intraperitoneal injection of streptozotocin (STZ) in adult Sprague-Dawley male rats; ICH was induced by stereotaxic infusion of collagenase/heparin into the right striatum. It was observed that the size of induced hemorrhage was significantly larger in the hyperglycemic group (n=6 in each group). On the first day after ICH, an apparent decrease in the bilateral grasp was also observed for the lesioned hyperglycemic rats compared with normoglycemic ones. When employing 2-DE and MS to examine the proteomes of perihematomal and control regions in individual hyperglycemic and normoglycemic rats, eight differentially expressed protein targets were identified. Most noteworthy, in response to ICH significant increase of albumin was ubiquitously observed in the brains of normoglycemic rats but not in the brains of hyperglycemic rats. Coincidentally, more significant neuronal apoptosis were found in the perihematomal regions of hyperglycemic rats. These observations described suggest the protection role of albumin in acute stage of ICH, which may be dependent on different blood sugar levels.  相似文献   
138.
The utility of mining DNA sequence data to understand the structure and expression of cereal prolamin genes is demonstrated by the identification of a new class of wheat prolamins. This previously unrecognized wheat prolamin class, given the name δ-gliadins, is the most direct ortholog of barley γ3-hordeins. Phylogenetic analysis shows that the orthologous δ-gliadins and γ3-hordeins form a distinct prolamin branch that existed separate from the γ-gliadins and γ-hordeins in an ancestral Triticeae prior to the branching of wheat and barley. The expressed δ-gliadins are encoded by a single gene in each of the hexaploid wheat genomes. This single δ-gliadin/γ3-hordein ortholog may be a general feature of the Triticeae tribe since examination of ESTs from three barley cultivars also confirms a single γ3-hordein gene. Analysis of ESTs and cDNAs shows that the genes are expressed in at least five hexaploid wheat cultivars in addition to diploids Triticum monococcum and Aegilops tauschii. The latter two sequences also allow assignment of the δ-gliadin genes to the A and D genomes, respectively, with the third sequence type assumed to be from the B genome. Two wheat cultivars for which there are sufficient ESTs show different patterns of expression, i.e., with cv Chinese Spring expressing the genes from the A and B genomes, while cv Recital has ESTs from the A and D genomes. Genomic sequences of Chinese Spring show that the D genome gene is inactivated by tandem premature stop codons. A fourth δ-gliadin sequence occurs in the D genome of both Chinese Spring and Ae. tauschii, but no ESTs match this sequence and limited genomic sequences indicates a pseudogene containing frame shifts and premature stop codons. Sequencing of BACs covering a 3 Mb region from Ae. tauschii locates the δ-gliadin gene to the complex Gli-1 plus Glu-3 region on chromosome 1.  相似文献   
139.
Data on social organization of two bands of black-and-white snub-nosed monkeys (Rhinopithecus bieti) were collected when the monkeys were crossing an open spot at Nanren and Bamei (northwest of Yunnan, China) using a sampling rule where individuals within one social unit are spatially closer to each other than individuals between social units. The typical pattern of social organization in this sample was multiple adult females (AFs) and their offspring with one adult male (AM) in a one-male unit (OMU), similar to that of many other colobines. In such units, on average one male is associated with 4.0 AFs and 2.5 of their offspring. Moreover, there are multimale/multifemale units and monogamous units besides OMUs. All bisexual units traveled together with at least one all-male unit as a cohesive band. In two bands of monkeys, 87% of AMs in bisexual units were within OMUs, 7.8% within monogamous units and 5.2% within multimale, multifemale units. In the Bamei band, 6.7% of AMs were in the all-male unit. The size of OMUs in the Nanren band was larger than that of the Bamei band, with more AFs and juveniles, which may be related to better conservation in the Nanren band's habitat. For the Nanren band, the average number of AFs in OMUs varied across time, increasing from 4.3 in 1994 to 5.1 in 2001, and then decreasing to 3.8 in 2005. This article suggests three possible explanations for this variation, but more data are needed for these hypotheses to be tested.  相似文献   
140.
Tea polyphenols, their biological effects and potential molecular targets   总被引:1,自引:0,他引:1  
Tea is the most popular beverage in the world, second only to water. Tea contains an infusion of the leaves from the Camellia sinensis plant rich in polyphenolic compounds known as catechins, the most abundant of which is (-)-EGCG. Although tea has been consumed for centuries, it has only recently been studied extensively as a health-promoting beverage that may act to prevent a number of chronic diseases and cancers. The results of several investigations indicate that green tea consumption may be of modest benefit in reducing the plasma concentration of cholesterol and preventing atherosclerosis. Additionally, the cancer-preventive effects of green tea are widely supported by results from epidemiological, cell culture, animal and clinical studies. In vitro cell culture studies show that tea polyphenols potently induce apoptotic cell death and cell cycle arrest in tumor cells but not in their normal cell counterparts. Green tea polyphenols were shown to affect several biological pathways, including growth factor-mediated pathway, the mitogen-activated protein (MAP) kinase-dependent pathway, and ubiquitin/proteasome degradation pathways. Various animal studies have revealed that treatment with green tea inhibits tumor incidence and multiplicity in different organ sites such as skin, lung, liver, stomach, mammary gland and colon. Recently, phase I and II clinical trials have been conducted to explore the anticancer effects of green tea in humans. A major challenge of cancer prevention is to integrate new molecular findings into clinical practice. Therefore, identification of more molecular targets and biomarkers for tea polyphenols is essential for improving the design of green tea trials and will greatly assist in a better understanding of the mechanisms underlying its anti-cancer activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号