首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14154篇
  免费   1128篇
  国内免费   1091篇
  16373篇
  2024年   30篇
  2023年   193篇
  2022年   466篇
  2021年   804篇
  2020年   488篇
  2019年   594篇
  2018年   629篇
  2017年   473篇
  2016年   566篇
  2015年   916篇
  2014年   1030篇
  2013年   1149篇
  2012年   1323篇
  2011年   1177篇
  2010年   676篇
  2009年   644篇
  2008年   735篇
  2007年   618篇
  2006年   476篇
  2005年   419篇
  2004年   324篇
  2003年   319篇
  2002年   267篇
  2001年   263篇
  2000年   213篇
  1999年   210篇
  1998年   131篇
  1997年   129篇
  1996年   115篇
  1995年   100篇
  1994年   82篇
  1993年   70篇
  1992年   103篇
  1991年   72篇
  1990年   73篇
  1989年   57篇
  1988年   58篇
  1987年   41篇
  1986年   42篇
  1985年   56篇
  1984年   40篇
  1983年   22篇
  1982年   22篇
  1981年   9篇
  1979年   8篇
  1978年   11篇
  1974年   11篇
  1971年   9篇
  1967年   7篇
  1966年   9篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
161.
Workers who are exposed to extreme heat or work in hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational illnesses and injuries. On the other hand, local and regional heat therapy has been used for the treatment of some cancers, such as liver cancer, lung cancer, and kidney cancer. Although heat stress has been shown to induce the accumulation of p53 protein, a key regulator of cell cycle, apoptosis, DNA repair, and autophagy, how it regulates p53 protein accumulation and what the p53 targets are remain unclear. Here, we show that, among various genotoxic stresses, including ionizing radiation (IR) and ultraviolet (UV) radiation, heat stress contributes significantly to increase p53 protein levels in normal liver cells and liver cancer cells. Heat stress did not increase p53 mRNA expression as well as p53 promoter activity. However, heat stress enhanced the half-life of p53 protein. Moreover, heat stress increased the expression of puma and light chain 3 (LC-3), which are associated with the apoptotic and autophagic function of p53, respectively, whereas it did not change the expression of the cell cycle regulators p21, 14-3-3δ, and GADD45α, suggesting that heat-triggered alteration of p53 selectively modulates the downstream targets of p53. Our study provides a novel mechanism by which heat shock stimulates p53 protein accumulation, which is different from common DNA damages, such as IR and UV, and also provides new molecular basis for heat injuries or heat therapy.  相似文献   
162.
163.
164.
The Cdx-2 polymorphism in VDR gene has been extensively investigated for association with cancer risk, however, results of different studies have been inconsistent. The objective of this study is to assess the relationship of the Cdx-2 polymorphism in VDR and cancer risk by meta-analysis. All eligible case–control studies were searched in Pubmed, Embase, CNKI and Wanfang databases. Odds ratios (OR) with the 95 % confidence intervals (CI) were used to assess the association. A total of 12,906 cases and 13,700 controls in 18 case–control studies were included. The results indicated that the AA homozygote carriers had a 16 % increased risk of cancer, when compared with the homozygote GG and heterozygote AG (OR = 1.16, 95 % CI 1.05–1.29 for AA vs. GG+AG). In the subgroup analysis by ethnicity, significant elevated risks were associated with AA homozygote carriers in Caucasians (OR = 1.16, 95 % CI 1.01–1.33, and P = 0.04) and African Americans (OR = 1.31, 95 % CI 1.07–1.61, and P = 0.01). In the subgroup analysis by cancer types, the polymorphism was associated with increased risk of breast cancer (OR = 1.23, 95 % CI 1.04–1.46, and P = 0.02). This meta-analysis suggested that the Cdx-2 polymorphism of VDR gene would be a risk factor for cancer. To further evaluate gene-to-gene and gene-to-environmental interactions between polymorphisms of VDR gene and cancer risk, more studies with large groups of patients are required.  相似文献   
165.
Studies focusing on the association of gene methylthioadenosine phosphorylase (MTAP) with the risk of coronary artery disease (CAD) and myocardial infarction (MI) are limited.  相似文献   
166.
Genetic polymorphisms of glutathione S-transferases (GSTs) and type 2 diabetes mellitus (T2DM) risk have been widely studied, however, the results were somewhat conflicting. To evaluate the association of GSTs (GSTM1, GSTT1 and GSTP1) gene polymorphisms with T2DM, a meta-analysis was performed before October, 2012. ORs were pooled according to random-effects model. There were a total of 1354/1666 (n = 9) cases/controls (studies) for GSTM1, 1271/1470 (n = 8) for GSTT1, and 1205/1250 (n = 7) for GSTM1. There were significant associations between GSTM1 polymorphism, GSTT1 polymorphism and T2DM in the contrast of present genotype vs. null genotype, with pooled OR = 1.99 (95%CI = 1.46–2.71) and OR = 1.61 (95%CI = 1.19–2.17), respectively. Yet no significant association of GSTP1 polymorphism and T2DM was showed. When stratified by ethnicity, the significant associations were also existed in Asians for GSTM1 and GSTT1, but not GSTP1. No publication bias but some extent of heterogeneity was observed. Finally, the accumulated evidence proved the obvious associations of GSTM1 and GSTT1 polymorphisms with an increased risk of T2DM.  相似文献   
167.
168.
The preparative‐scale separation of chiral compounds is vitally important for the pharmaceutical industry and related fields. Herein we report a simple approach for rapid preparative separation of enantiomers using functional nucleic acids modified gold nanoparticles (AuNPs). The separation of DL‐tryptophan (DL‐Trp) is demonstrated as an example to show the feasibility of the approach. AuNPs modified with enantioselective aptamers were added into a racemic mixture of DL‐Trp. The aptamer‐specific enantiomer (L‐Trp) binds to the AuNPs surface through aptamer‐L‐Trp interaction. The separation of DL‐Trp is then simply accomplished by centrifugation: the precipitate containing L‐Trp bounded AuNPs is separated from the solution, while the D‐Trp remains in the supernatant. The precipitate is then redispersed in water. The aptamer is denatured under 95 °C and a second centrifugation is then performed, resulting in the separation of AuNPs and L‐Trp. The supernatant is finally collected to obtain pure L‐Trp in water. The results show that the racemic mixture of DL‐Trp is completely separated into D‐Trp and L‐Trp, respectively, after 5 rounds of repeated addition of fresh aptamer‐modified AuNPs to the DL‐Trp mixture solution. Additionally, the aptamer‐modified AuNPs can be repeatedly used for at least eight times without significant loss of its binding ability because the aptamer can be easily denatured and renatured in relatively mild conditions. The proposed approach could be scaled up and extended to the separation of other enantiomers by the adoption of other enantioselective aptamers. Chirality 25:751–756, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
169.
Many species in the families of Rosaceae, Solanaceae, and Scrophulariaceae exhibit gametophytic self-incompatibility, a phenomenon controlled by two polymorphic genes at the S-locus, style-S (S-RNase) and pollen-S (SFB). Sequences of both genes show high levels of diversity, characteristic of genes involved in recognition of self-incompatibility systems in plants. In this study, S 24 -RNase and SFB 24 alleles were cloned from Prunus armeniaca cv. Chuanzhihong (Chinese apricot). Sequence comparisons of deduced amino acid sequences revealed that the P. armeniaca S 24 -haplotype has different SFB alleles, but shares a single S-RNase allele with P. armeniaca S 4 -haplotype. Moreover, P. armeniaca S 24 -RNase haplotype has a single and three different alleles with S 1 -RNase of P. tenella (dwarf almond) and S 1 -RNase of P. mira (smooth pit peach), respectively. The functionalities of SFB 24 and SFB 4 have been evaluated by pollen tube growth and controlled field tests of P. tenella and P. mira. Genetic analysis of the two intercrosses showed that progenies segregated 1:1 into two S-genotype classes, which is consistent with the expected ratio for semi-compatibility. These findings imply that the allelic function of the S 24 -haplotype is identical to that of the S 4 -haplotype in a self-incompatibility reaction. Thus, these two Prunus S-haplotypes are in fact two neutral variants of the same S-haplotype. The evolution of the S-allele is also discussed in terms of both functions and differences between S 24 - and S 4 -haplotypes in Prunus.  相似文献   
170.

Background and aims

Anthropogenic nitrogen (N) and phosphorus (P) input has changed the relative importance of nutrient elements. This study aimed to examine the effects of different nutrient conditions on the interaction between exotic and native plants.

Methods

We conducted a greenhouse experiment with a native species Quercus acutissima Carr. and an exotic species Rhus typhina L. grown in monocultures or mixtures, under three N:P ratios (5, 15 and 45 corresponding to N-limited, basic N and P supply and P-limited conditions, respectively). After 12 weeks of treatment, traits related to biomass allocation, leaf physiology and nutrient absorption were determined.

Results

R. typhina was dominant under competition, with a high capacity for carbon assimilation and nutrient absorption, and the dominance was unaffected by increasing N:P ratios. R. typhina invested more photosynthate in leaves and more nutrients in the photosynthetic apparatus, enabling high biomass production. Q. acutissima invested more photosynthate in roots and more nutrients in leaf persistence at the expense of reduced carbon assimilation capacity.

Conclusions

Different trade-offs in biomass and nutrient allocation of the two species is an important reason for their distinct performances under competition and helps R. typhina to maintain dominance under different nutrient conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号