首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   8篇
  国内免费   40篇
  2024年   1篇
  2023年   4篇
  2022年   7篇
  2021年   12篇
  2020年   9篇
  2019年   12篇
  2018年   4篇
  2017年   6篇
  2016年   10篇
  2015年   15篇
  2014年   15篇
  2013年   12篇
  2012年   16篇
  2011年   21篇
  2010年   5篇
  2009年   3篇
  2008年   1篇
  2007年   8篇
  2006年   7篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   8篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1995年   2篇
  1987年   1篇
排序方式: 共有197条查询结果,搜索用时 31 毫秒
81.
Rhizobacteria devote a relatively large percentage of their genomes to encode bioactive natural products that are important for competition in the rhizosphere. In this study, a plant beneficial rhizobacterium Bacillus velezensis SQR9 was discovered to produce novel antibacterial fatty acids, Bacillunoic acids, which are encoded on a genomic island (GI). This GI contains a hybrid type I fatty acid synthase (FAS)-polyketide synthase (PKS) system and an ABC transporter. The FAS was predicted to synthesize a primer that was transferred to the PKS to synthesize Bacillunoic acids. The synthesized Bacillunoic acids inhibit the growth of diverse bacteria, with the strongest activity against closely related Bacillus strains, the ABC transporter exported the toxic Bacillunoic acids upon their induction for protecting the producing strain. The inhibition of other Bacillus strains by Bacillunoic acids extended the antimicrobial spectrum of SQR9 and enhanced its competition with closely related root-associated bacteria. So, through the obtaining of this GI by horizontal gene transfer, strain SQR9 not only acquired a competitive weapon but also acquired a self-protecting shield, which increased its competition with other rhizobacteria.  相似文献   
82.

Aim

It is necessary to understand the roles of root exudates involved in plant-microbe interactions to inform practical application of beneficial rhizosphere microbial strains.

Methods

Colonization of Bacillus amyloliquefaciens SQR9 (isolated from cucumber rhizosphere) and Bacillus subtilis N11 (isolated from banana rhizosphere) of their original host was found to be more effective as compared to the colonization of the non-host plant. Organic acids in the root exudates of the two plants were identified by High performance liquid chromatography (HPLC). The chemotactic response and effects on biofilm formation were assessed for SQR9 and N11 in response to cucumber and banana root exudates, as well as their organic acids components.

Results

Citric acid detected exclusively in cucumber exudates could both attract SQR9 and induce its biofilm formation, whereas only chemotactic response but not biofilm formation was induced in N11. Fumaric acid that was only detected in banana root exudates revealed both significant roles on chemotaxis and biofilm formation of N11, while showing only effects on biofilm formation but not chemotaxis of SQR9.

Conclusion

The relationship between PGPR strain and root exudates components of its original host might contribute to preferential colonization. This study advances a clearer understanding of the mechanisms relevant to application of PGPR strains in agricultural production.  相似文献   
83.

Aims and background

Soil fertility quality index is a useful indicator that helps to improve sustainable land use management and achieve economical yield in agriculture production. The objectives of this study were to evaluate the changes of soil fertility quality between the 1980s and 2000s in different cropping systems and its significance to crop productivity and sustainability.

Methods

We collected all published data on crop yields and soil parameters from 58 long-term experiments in three typical double-cropping systems in China, including maize-wheat (M-W), rice-rice (R-R) and rice-wheat (R-W) cropping systems, and selected seven fertilizer treatments in each experiment, including inorganic fertilizer [nitrogen and phosphorus fertilizer (NP), nitrogen and potassium fertilizer (NK), phosphorus and potassium fertilizer (PK) and balanced mineral fertilizer (NPK)], combined NPK with farmyard manure (NPKM) or crop straw (NPKS), and no fertilizer application (served as control). For comparison, an integrated fertility quality index (IFQI) was used to estimate the variations in soil fertility in different cropping systems. Moreover, the mean production variability index (PVI, %) in each cropping system was calculated to evaluate the stability of crop production.

Results

Over cropping systems, the averaged relative yields of PK, NK and NP ranged from 38.0 to 97.4 %, while the mean yields can be increased by 2.4–5.1 % in NPKM, compared to NPK. The mean yields were similar between NPK and NPKS for maize and wheat crops, but the yield was increased by 4.3–10.0 % in NPKS. Among the different treatments, the highest variability of cereal productivity was obtained in NK, PK or Control, while the lowest value was mostly recorded in NPKM or NPKS in these three cropping systems. Relative to the control, the IFQIs in fertilization treatments were increased by 9.4–150.0 %, 6.2–41.5 % and 1.3–17.5 % in M-W, R-W and R-R systems, respectively (except for PK treatment in R-R system). However, changes of IFQI in topsoil differed among fertilizer treatments, and greater increases existed in the treatments receiving organic residues (NPKM and NPKS).

Conclusions

The increase in crop yield is exponentially correlated with the increased IFQI over treatments in three cropping systems. Over the treatments and systems, production variability among years is shown to be negatively, linearly related to IFQI (P?<?0.001). Therefore, the high grain yield and low production variability can be simultaneously achieved by increasing soil fertility in all three cropping systems.  相似文献   
84.
Composting is a process of stabilizing organic wastes through the degradation of biodegradable components by microbial communities under controlled conditions. In the present study, genera and species diversities, amylohydrolysis, protein and cellulose degradation abilities of culturable bacteria in the thermophilic phase of composting of cattle manure with plant ash and rice bran were investigated. The number of culturable thermophilic bacteria and actinomyces decreased with the increasing temperature. At the initiation and end of the thermophilic phase, genera and specie diversities and number of bacteria possessing degradation abilities were higher than during the middle phase. During the thermophilic composting phase, Bacillus, Geobacillus and Ureibacillus were the dominant genera, and Geobacillus thermodenitrificans was the dominant species. In later thermophilic phases, Geobacillus toebii and Ureibacillus terrenus were dominant. Bacillus, at the initiation, and Ureibacillus and Geobacillus, at the later phase, contributed the multiple degradation abilities. These data will facilitate the control of composting in the future.  相似文献   
85.
A new acidophilic xylanase (XYN11A) from Penicillium oxalicum GZ-2 has been purified, identified and characterized. Synchronized fluorescence spectroscopy was used for the first time to evaluate the influence of metal ions on xylanase activity. The purified enzyme was identified by MALDI TOF/TOF mass spectrometry, and its gene (xyn11A) was identified as an open reading frame of 706 bp with a 68 bp intron. This gene encodes a mature protein of 196 residues with a predicted molecular weight of 21.3 kDa that has the 100 % identity with the putative xylanase from the P. oxalicum 114-2. The enzyme shows a structure comprising a catalytic module family 10 (GH10) and no carbohydrate-binding module family. The specific activities were 150.2, 60.2, and 72.6 U/mg for beechwood xylan, birchwood xylan, and oat spelt xylan, respectively. XYN11A exhibited optimal activity at pH 4.0 and remarkable pH stability under extremely acidic condition (pH 3). The specific activity, K m and V max values were 150.2 U/mg, 30.7 mg/mL, and 403.9 μmol/min/mg for beechwood xylan, respectively. XYN11A is a endo-β-1,4-xylanase since it release xylobiose and xylotriose as the main products by hydrolyzing xylans. The activity of XYN11A was enhanced 155 % by 1 mM Fe2+ ions, but was inhibited strongly by Fe3+. The reason of enhancing the xylanase activity of XYN11A with 1 mM Fe2+ treatment may be responsible for the change of microenvironment of tryptophan residues studied by synchronous fluorescence spectrophotometry. Inhibition of the xylanase activity by Fe3+ was first time demonstrated to associate tryptophan fluorescence quenching.  相似文献   
86.
Water stress is a primary limitation on plant growth. In previous studies, it has been found that ammonium enhances the tolerance of rice plants to water stress, but how water is related to nitrogen form and water stress remains unknown. To study the effects of nitrogen form (NH 4 + , NO 3 ? , and a mixture of NH 4 + and NO 3 ? ) on the growth and water absorption of rice (Oryza sativa L.) seedlings, a hydroponic experiment with water stress, simulated by the addition of polyethylene glycol (PEG, 10% w/v, MW 6000), was conducted in a greenhouse. The results showed that, compared with non-water stress, under water stress, the fresh weight of rice seedlings increased by 14% with NH 4 + nutrition, whereas it had decreased by about 20% with either NO 3 ? or mixed nitrogen nutrition. No significant difference was found in the transpiration rate of excised shoots or in xylem exudation of excised roots in NH 4 + supply between the two water situations, whereas xylem flow decreased by 57% and 24% under water stress in NO 3 ? and mixed nutrition, and root hydraulic conductivity decreased by 29% and 54% in plants in NH 4 + and NO 3 ? nutrition conditions, respectively. Although water absorption ability decreased in both NH 4 + and NO 3 ? nutrition, aquaporin activity was higher in NH 4 + than in NO 3 ? nutrition, regardless of water stress. We conclude that NH 4 + nutrition can improve water handling in rice seedlings and subsequently enhance their resistance to drought.  相似文献   
87.
Cai  Jiehao  Wang  Xiangshi  Zhao  Jun  Ge  Yanling  Xu  Jin  Tian  He  Chang  Hailing  Xia  Aimei  Wang  Jiali  Zhang  Jinqiang  Wei  Zhongqiu  Li  Jingjing  Wang  Chuning  Wang  Jianshe  Zhu  Qirong  Zhai  Xiaowen  Zeng  Mei 《中国病毒学》2020,35(6):803-810
Virologica Sinica - To understand the epidemiological and clinical features of the symptomatic and asymptomatic pediatric cases of COVID-19, we carried out a prospective study in Shanghai during...  相似文献   
88.
89.
Chitosan composite rods (CS–Fe3+) were prepared via an in situ precipitation method. The relationships among the preparation, structures, and properties of the CS–Fe3+ composite rods have been investigated. The results of Fourier-transform infrared spectroscopy (FTIR) and core electron X-ray photoelectron spectroscopy (XPS) indicate that the CS and Fe3+ are coordinated via a chelation mechanism. The content of Fe3+ in the complex was determined by atomic absorption spectrometry (AAS) and elemental analysis (EA), the results of which suggested that the content of Fe3+ in the complex can be controlled by the concentration of the ferric salts during coordination. The changes in thermal stability and crystallization properties were measured by thermogravimetric analysis (TGA) and X-ray diffraction (XRD) patterns, respectively. Scanning electron microscopy (SEM) was used to observe the morphological change of the CS–Fe3+ complex rod. After coordination with Fe3+, the CS rod had a denser, layered structure. However, the layered structure cannot remain intact when the ratios of –NH2/Fe3+ are 100/15 and 100/20. Moreover, its thermal stability decreased, and its bending strength was improved significantly (from 86 MPa to more than 210 MPa), despite the remarkable decrease in the degree of crystallinity.  相似文献   
90.
Wang Y  Chen Y  Shen Q  Yin X 《Gene》2011,483(1-2):11-21
The biosynthetic gene cluster for laspartomycins, a family of 11 amino acid peptide antibiotics, has been cloned and sequenced from Streptomyces viridochromogenes ATCC 29814. Annotation of a segment of 88912bp of S. viridochromogenes genomic sequence revealed the putative lpm cluster and its flanking regions which harbor 43 open reading frames. The lpm cluster, which spans approximately 60 kb, consists of 21 open reading frames. Those include four NRPS genes (lpmA/orf18, lpmB/orf25, lpmC/orf26 and lpmD/orf27), four genes (orfs 21, 22, 24 and 29) involved in the lipid tail biosynthesis and attachment, four regulatory genes (orfs 13, 19, 32 and 33) and three putative exporters or self-resistance genes (orfs 14, 20 and 30). In addition, the gene involved in the biosynthesis of the nonproteinogenic amino acid Pip was also identified in the lpm cluster while the genes necessary for the biosynthesis of the rare residue diaminopropionic acid (Dap) were found to reside elsewhere on the chromosome. Interestingly, the dabA, dabB and dabC genes predicted to code for the biosynthesis of the unusual amino acid diaminobutyric acid (Dab) are organized into the lpm cluster even though the Dab residue was not found in the laspartomycins. Disruption of the NRPS lpmC gene completely abolished laspartomycin production in the corresponding mutant strain. These findings will allow molecular engineering and combinatorial biosynthesis approaches to expand the structural diversity of the amphomycin-group peptide antibiotics including the laspartomycins and friulimicins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号