首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30351篇
  免费   2385篇
  国内免费   2076篇
  34812篇
  2024年   67篇
  2023年   441篇
  2022年   1017篇
  2021年   1703篇
  2020年   1041篇
  2019年   1343篇
  2018年   1280篇
  2017年   930篇
  2016年   1271篇
  2015年   1857篇
  2014年   2209篇
  2013年   2474篇
  2012年   2768篇
  2011年   2459篇
  2010年   1480篇
  2009年   1276篇
  2008年   1504篇
  2007年   1312篇
  2006年   1153篇
  2005年   941篇
  2004年   791篇
  2003年   664篇
  2002年   594篇
  2001年   535篇
  2000年   470篇
  1999年   483篇
  1998年   269篇
  1997年   290篇
  1996年   292篇
  1995年   282篇
  1994年   253篇
  1993年   179篇
  1992年   276篇
  1991年   186篇
  1990年   151篇
  1989年   151篇
  1988年   92篇
  1987年   85篇
  1986年   60篇
  1985年   68篇
  1984年   29篇
  1983年   32篇
  1982年   18篇
  1981年   15篇
  1980年   12篇
  1979年   9篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
121.
Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2. European avian-like H1N1 viruses, which were initially detected in European pig populations in 1979, have been circulating in pigs in eastern China since 2007. In this study, six influenza A viruses were isolated from 60 swine lung samples collected from January to April 2011 in eastern China. Based on whole genome sequencing, molecular characteristics of two isolates were determined. Phylogenetic analysis showed the eight genes of the two isolates were closely related to those of the avian-like H1N1 viruses circulating in pig populations, especially similar to those found in China. Four potential glycosylation sites were observed at positions 13, 26, 198, 277 in the HA1 proteins of the two isolates. Due to the presence of a stop codon at codon 12, the isolates contained truncated PB1-F2 proteins. In this study, the isolates contained 591Q, 627E and 701N in the polymerase subunit PB2, which had been shown to be determinants of virulence and host adaptation. The isolates also had a D rather than E at position 92 of the NS1, a marker of mammalian adaptation. Both isolates contained the GPKV motif at the PDZ ligand domain of the 3′ end of the NS1, a characteristic marker of the European avian-like swine viruses since about 1999, which is distinct from those of avian, human and classical swine viruses. The M2 proteins of the isolates have the mutation (S31N), a characteristic marker of the European avian-like swine viruses since about 1987, which may confer resistance to amantadine and rimantadine antivirals. Our findings further emphasize the importance of surveillance on the genetic diversity of influenza A viruses in pigs, and raise more concerns about the occurrence of cross-species transmission events.  相似文献   
122.
During protein synthesis, elongation factor-Tu (EF-Tu) bound to GTP chaperones the entry of aminoacyl-tRNA (aa-tRNA) into actively translating ribosomes. In so doing, EF-Tu increases the rate and fidelity of the translation mechanism. Recent evidence suggests that EF-Ts, the guanosine nucleotide exchange factor for EF-Tu, directly accelerates both the formation and dissociation of the EF-Tu-GTP-Phe-tRNAPhe ternary complex (Burnett, B. J., Altman, R. B., Ferrao, R., Alejo, J. L., Kaur, N., Kanji, J., and Blanchard, S. C. (2013) J. Biol. Chem. 288, 13917–13928). A central feature of this model is the existence of a quaternary complex of EF-Tu/Ts·GTP·aa-tRNAaa. Here, through comparative investigations of phenylalanyl, methionyl, and arginyl ternary complexes, and the development of a strategy to monitor their formation and decay using fluorescence resonance energy transfer, we reveal the generality of this newly described EF-Ts function and the first direct evidence of the transient quaternary complex species. These findings suggest that EF-Ts may regulate ternary complex abundance in the cell through mechanisms that are distinct from its guanosine nucleotide exchange factor functions.  相似文献   
123.
124.
Studying the microbial symbionts of eukaryotic hosts has revealed a range of interactions that benefit host biology. Most eukaryotes are also infected by parasites that adversely affect host biology for their own benefit. However, it is largely unclear whether the ability of parasites to develop in hosts also depends on host-associated symbionts, e.g., the gut microbiota. Here, we studied the parasitic wasp Leptopilina boulardi (Lb) and its host Drosophila melanogaster. Results showed that Lb successfully develops in conventional hosts (CN) with a gut microbiota but fails to develop in axenic hosts (AX) without a gut microbiota. We determined that developing Lb larvae consume fat body cells that store lipids. We also determined that much larger amounts of lipid accumulate in fat body cells of parasitized CN hosts than parasitized AX hosts. CN hosts parasitized by Lb exhibited large increases in the abundance of the bacterium Acetobacter pomorum in the gut, but did not affect the abundance of Lactobacillus fructivorans which is another common member of the host gut microbiota. However, AX hosts inoculated with A. pomorum and/or L. fructivorans did not rescue development of Lb. In contrast, AX larvae inoculated with A. pomorum plus other identified gut community members including a Bacillus sp. substantially rescued Lb development. Rescue was further associated with increased lipid accumulation in host fat body cells. Insulin-like peptides increased in brain neurosecretory cells of parasitized CN larvae. Lipid accumulation in the fat body of CN hosts was further associated with reduced Bmm lipase activity mediated by insulin/insulin-like growth factor signaling (IIS). Altogether, our results identify a previously unknown role for the gut microbiota in defining host permissiveness for a parasite. Our findings also identify a new paradigm for parasite manipulation of host metabolism that depends on insulin signaling and the gut microbiota.Subject terms: Animal physiology, Microbial ecology  相似文献   
125.
126.
127.
Hyperinsulinemia is common in obesity, but whether it plays a role in intramyocellular triglyceride (imcTG) buildup is unknown. In this study, hyperinsulinemic-euglycemic clamp experiments were performed in overnight-fasted lean and high-fat-fed obese rats, awake, to determine the effect of insulin on imcTG synthesis (incorporation of [(14)C]glycerol, [(14)C]glucose, and [(3)H]oleate). Insulin infusion at 25 (low insulin) and 100 (high insulin) pmol/kg/min increased plasma insulin by 5- and 16-fold, respectively, whereas plasma and intramyocellular glycerol, FFAs, triglycerides, and glucose levels were maintained at their basal levels by co-infusion of exogenous glycerol, FFAs, and triglycerides at fixed rates and glucose at varying rates. In obese rats, insulin suppressed incorporation of glycerol into the imcTG-glycerol moiety dose dependently (P < 0.01-P < 0.001) in gastrocnemius and tibialis anterior, but only the high insulin suppressed it in soleus (P < 0.05). The low insulin suppressed glucose incorporation into imcTG-glycerol in all three muscles (P = 0.01-P < 0.01). However, the low insulin did not affect (P > 0.05) and the high insulin suppressed (P < 0.05-P < 0.01) fatty acid incorporation into imcTG in all three muscles. Insulin also suppressed glycerol incorporation in lean rats (P < 0.01-P < 0.04). On the other hand, imcTG pool size was not affected by insulin (P > 0.05). These observations suggest that acute hyperinsulinemia inhibits imcTG synthesis and thus does not appear to promote imcTG accumulation via the synthetic pathway, at least in the short term.  相似文献   
128.
A series of 2-(substituted phenyl)-N-methyl-N-[(1S)-1-(substituted alkyl)-2-(1-(3-pyrrolinyl))ethyl]acetamides were synthesized and evaluated as highly selective kappa-agonists with K(i) values in low nanomolar range. 3-Pyrroline incorporated into the basic amino functionality in combination with 2-(methylthio)ethyl substituent on the carbon adjacent to the amide nitrogen remarkably enhanced the kappa-selectivity. 3,4-Dichlorophenyl derivative 1e was found the most potent and selective analgesic in this series with ED(50) value of 0.023 mg/kg.  相似文献   
129.
130.
ObjectivesPeriplaneta americana extract (PAE) is proven to be promising in treating fever, wound healing, liver fibrosis, and cardiovascular disease. However, the role of PAE in skeletal disorders remains unclear. This study investigated whether PAE regulates osteoclastic differentiation in vitro via the culture using RAW264.7 cells and bone marrow derived macrophages (BMDMs).Materials and MethodsRAW264.7 cells and BMDMs were cultured and induced for osteoclastic differentiation supplementing with different concentrations of PAE (0, 0.1, 1, and 10 mg/mL). Cell counting kit‐8 (CCK‐8) assay was used to detect the cytotoxicity and cell proliferation. TRAP staining, actin ring staining, real‐time quantitative PCR (RT‐qPCR), and bone resorption activity test were performed to detect osteoclastic differentiation. RT‐qPCR and enzyme‐linked immunosorbent assay (ELISA) were conducted to assay the expression and secretion of inflammatory factors. RNA sequencing (RNA‐seq) and western blot analysis were carried out to uncover the underlying mechanism.ResultsCCK‐8 results showed that 10 mg/mL and a lower concentration of PAE did not affect cell proliferation. RT‐qPCR analysis verified that PAE down‐regulated the osteoclastic genes Nfatc1, Ctsk, and Acp5 in macrophages. Moreover, PAE restrained the differentiation, formation, and function of osteoclasts. Besides, RT‐qPCR and ELISA assays showed that PAE decreased inflammatory genes expression and reduced the secretion of inflammatory factors, including IL1β, IL6, and TNFα. Subsequent RNA‐seq analysis identified possible genes and signaling pathways of PAE‐mediated osteoclastogenesis suppression.ConclusionsOur study indicates that PAE has inhibitive effects on osteoclastogenesis and may be a potential therapeutic alternative for bone diseases.

Periplaneta americana extract (PAE), the animal medicine material extracted from the insects Periplaneta americana, is proven to possess a variety of pharmacological functions. However, the role of PAE in skeletal disorders remains unclear. In this study, we found that PAE decreased osteoclast genes expression Nfatc1, Ctsk, and Acp5 in macrophages. Besides, PAE restrained the differentiation, formation, and function of osteoclasts. Moreover, PAE suppressed the LPS‐induced inflammation. Subsequent RNA‐seq analysis identified the signaling pathways of PAE‐mediated osteoclastogenesis suppression. Our study indicated that PAE has inhibitive effects on osteoclastic differentiation and may be a potential therapeutic Chinese medicine for bone diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号