全文获取类型
收费全文 | 4996篇 |
免费 | 452篇 |
国内免费 | 373篇 |
专业分类
5821篇 |
出版年
2024年 | 23篇 |
2023年 | 89篇 |
2022年 | 167篇 |
2021年 | 267篇 |
2020年 | 181篇 |
2019年 | 266篇 |
2018年 | 225篇 |
2017年 | 140篇 |
2016年 | 245篇 |
2015年 | 367篇 |
2014年 | 350篇 |
2013年 | 375篇 |
2012年 | 445篇 |
2011年 | 379篇 |
2010年 | 264篇 |
2009年 | 240篇 |
2008年 | 259篇 |
2007年 | 241篇 |
2006年 | 201篇 |
2005年 | 146篇 |
2004年 | 134篇 |
2003年 | 137篇 |
2002年 | 98篇 |
2001年 | 91篇 |
2000年 | 58篇 |
1999年 | 78篇 |
1998年 | 42篇 |
1997年 | 37篇 |
1996年 | 43篇 |
1995年 | 29篇 |
1994年 | 28篇 |
1993年 | 32篇 |
1992年 | 31篇 |
1991年 | 27篇 |
1990年 | 23篇 |
1989年 | 12篇 |
1988年 | 16篇 |
1987年 | 7篇 |
1986年 | 7篇 |
1985年 | 11篇 |
1984年 | 4篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1976年 | 1篇 |
排序方式: 共有5821条查询结果,搜索用时 83 毫秒
21.
Yu Chen Huang Nie Li Tian Li Tong Lujia Yang Ning Lao Hailong Dong Hanfei Sang Lize Xiong 《Neurochemical research》2013,38(2):364-370
Nicotine has been reported to exert certain protective effect in the Parkinson’s and Alzheimer’s diseases. Whether it has a similar action in focal cerebral ischemia was unclear. In the present study, rats received either an injection of (?)-nicotine hydrogen tartrate salt (1.2 mg/kg, i.p.) or the vehicle 2 h before the 120 min middle cerebral artery occlusion. Neurological deficits and histological injury were assessed at 24 h after reperfusion. The content of endocannabinoids and the expression of cannabinoid receptor CB1 in brain tissues were determined at different time points after nicotine administration. Results showed that nicotine administration ameliorated neurological deficits and reduced infarct volume induced by cerebral ischemia in the rats. The neuroprotective effect was partially reversed by CB1 blockage. The content of the endocannabinoids N-arachidonylethanolamine and 2-arachidonoylglycerol, as well as the expression of cannabinoid receptor CB1 were up-regulated in brain tissues after nicotine delivery. These results suggest that endogenous cannabinoid system is involved in the nicotine-induced neuroprotection against transient focal cerebral ischemia. 相似文献
22.
Guo Y Lin H Gao K Xu H Deng X Zhang Q Luo Z Sun S Deng H 《Biochemical and biophysical research communications》2011,(2):284-287
Recently, variants (rs2568494, rs2869967 and rs3821104) in the IREB2, FAM13A and XRCC5 genes were found to be associated with chronic obstructive pulmonary disease (COPD) in non-Asian populations by genome-wide association study (GWAS) analysis. To evaluate whether variants in these genes are related to COPD in Chinese Han population, we investigated COPD patients of Chinese Han ethnicity from Mainland China. Significant differences in genotypic distributions (χ2 = 6.319, p = 0.042 for rs2869967; χ2 = 6.062, p = 0.048 for rs3821104) and allele distributions (χ2 = 4.014, p = 0.045 for rs2869967; χ2 = 5.607, p = 0.018 for rs3821104) were observed between patients and control subjects for variants rs2869967 and rs3821104, whereas no statistically significant associations for genotypic and allelic distribution between IREB2 rs2568494 and COPD phenotype (p > 0.05) were identified. Our results support that FAM13A rs2869967 and XRCC5 rs3821104 are associated with COPD in Chinese Han population. 相似文献
23.
Chen L Xie L Dai Y Xiong X Fan W Zhang R 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2004,139(4):669-679
Nacre formation is an ideal model to study biomineralization processes. Although much has been done about biomineralization mechanism of nacre, little is known as to how cellular signaling regulates this process. We are interested in whether G protein signaling plays a role in mineralization. Degenerate primers against conserved amino acid regions of G proteins were employed to amplify cDNA from the pearl oyster Pinctada fucata. As a result, the cDNA encoding a novel G(s)alpha (pfG(s)alpha) from the pearl oyster was isolated. The G(s)alpha cDNA encodes a polypeptide of 377 amino acid residues, which shares high similarity to the octopus (Octopus vulgaris) G(s)alpha. The well-conserved A, C, G (switch I), switch II functional domains and the carboxyl terminus that is a critical site for interaction with receptors are completely identical to those from other mollusks. However, pfG(s)alpha has a unique amino acid sequence, which encodes switch III and interaction sites of adenylyl cyclase respectively. In situ hybridization and Northern blotting analysis revealed that the oyster G(s)alpha mRNA is widely expressed in a variety of tissues, with highest levels in the outer fold of mantle and epithelia of gill, the regions essential for biomineralization. We also show that overexpression of the pfG(s)alpha in mammalian MC3T3-E1 cells resulted in increased cAMP levels. Mutant pfG(s)alpha that has impaired CTX substrate diminished its ability to induce cAMP production. Furthermore, the alkaline phosphatase (ALP) activity, an indicator for mineralization, is induced by the G(s)alpha in MC3T3-E1 cells. These results indicated that G(s)alpha may be involved in regulation of physiological function, particularly in biological biomineralization. 相似文献
24.
25.
26.
Shifa Xiong Yunxiao Zhao Yicun Chen Ming Gao Liwen Wu Yangdong Wang 《Ecology and evolution》2020,10(16):8949-8958
Analysis of genetic diversity and population structure among Quercus fabri populations is essential for the conservation and utilization of Q. fabri resources. Here, the genetic diversity and structure of 158 individuals from 13 natural populations of Quercus fabri in China were analyzed using genotyping‐by‐sequencing (GBS). A total of 459,564 high‐quality single nucleotide polymorphisms (SNPs) were obtained after filtration for subsequent analysis. Genetic structure analysis revealed that these individuals can be clustered into two groups and the structure can be explained mainly by the geographic barrier, showed gene introgression from coastal to inland areas and high mountains could significantly hinder the mutual introgression of genes. Genetic diversity analysis indicated that the individual differences within groups are greater than the differences between the two groups. These results will help us better understand the genetic backgrounds of Q. fabri. 相似文献
27.
Bin Liu Xin Zheng Jiajun Li Xiong Li Ruimei Wu Jing Yang Wei Liu Gaoping Zhao 《Bioscience reports》2021,41(1)
Objective: The traditional Chinese medicine Caulis Sargentodoxae is widely used in the treatment of ulcerative colitis (UC), but the mechanism remains unknown. The present study aims to reveal its effective components, targets and pathways through network pharmacology and bioinformatics approaches.Materials and methods: Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was used to identify effective components. The ligand-based targets prediction was achieved through SwissTargetPrediction and TargetNet. UC-related targets were identified using Gene Expression Omnibus (GEO) data and DisGeNET. The common targets of disease and components were constructed and analyzed by PPI network. Lastly, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses are used to explain the functions of these common targets. Components-Targets-Pathways network was visualized and analyzed to further reveal the connection between the components and targets.Results: Eight active components and 102 key targets were identified to play an important role in UC. These targets were related to regulation of protein serine/threonine kinase activity, positive regulation of cell motility, response to molecule of bacterial origin, response to toxic substance, ERK1 and ERK2 cascade, peptidyl-tyrosine modification, inositol lipid-mediated signaling, cellular response to drug, regulation of inflammatory response and leukocyte migration. Moreover, HIF-1 signaling pathway and PI3K-Akt signaling pathway were the key targets involved in UC-related signaling pathways.Conclusion: The eight active components of Caulis Sargentodoxae mainly play a therapeutic role for UC through synergistic regulation of HIF-1 signaling pathway and PI3K-Akt signaling pathway. 相似文献
28.
During the development of the spinal cord, proliferative neural progenitors differentiate into postmitotic neurons with distinct fates. How cells switch from progenitor states to differentiated fates is poorly understood. To address this question, we studied the differentiation of progenitors in the zebrafish spinal cord, focusing on the differentiation of Kolmer-Agduhr″ (KA″) interneurons from lateral floor plate (LFP) progenitors. In vivo cell tracking demonstrates that KA″ cells are generated from LFP progenitors by both symmetric and asymmetric cell divisions. A photoconvertible reporter of signaling history (PHRESH) reveals distinct temporal profiles of Hh response: LFP progenitors continuously respond to Hh, while KA″ cells lose Hh response upon differentiation. Hh signaling is required in LFP progenitors for KA″ fate specification, but prolonged Hh signaling interferes with KA″ differentiation. Notch signaling acts permissively to maintain LFP progenitor cells: activation of Notch signaling prevents differentiation, whereas inhibition of Notch signaling results in differentiation of ectopic KA″ cells. These results indicate that neural progenitors depend on Notch signaling to maintain Hh responsiveness and rely on Hh signaling to induce fate identity, whereas proper differentiation depends on the attenuation of both Notch and Hh signaling. 相似文献
29.
James G. Burchfield Jinling Lu Daniel J. Fazakerley Shi‐Xiong Tan Yvonne Ng Katarina Mele Michael J. Buckley William E. Hughes David E. James 《Traffic (Copenhagen, Denmark)》2013,14(3):259-273
Regulated GLUT4 trafficking is a key action of insulin. Quantitative stepwise analysis of this process provides a powerful tool for pinpointing regulatory nodes that contribute to insulin regulation and insulin resistance. We describe a novel GLUT4 construct and workflow for the streamlined dissection of GLUT4 trafficking; from simple high throughput screens to high resolution analyses of individual vesicles. We reveal single cell heterogeneity in insulin action highlighting the utility of this approach – each cell displayed a unique and highly reproducible insulin response, implying that each cell is hard‐wired to produce a specific output in response to a given stimulus. These data highlight that the response of a cell population to insulin is underpinned by extensive heterogeneity at the single cell level. This heterogeneity is pre‐programmed within each cell and is not the result of intracellular stochastic events. 相似文献
30.
Qiang‐Qiang Xiong Tian‐Hua Shen Lei Zhong Chang‐Lan Zhu Xiao‐Song Peng Xiao‐Peng He Jun‐Ru Fu Lin‐Juan Ouyang Jian‐Min Bian Li‐Fang Hu Xiao‐Tang Sun Jie Xu Hui‐Ying Zhou Hao‐Hua He Xiao‐Rong Chen 《Physiologia plantarum》2019,167(4):564-584
Abrupt drought–flood alternation (T1) is a meteorological disaster that frequently occurs during summer in southern China and the Yangtze river basin, often causing a significant loss of rice production. In this study, the response mechanism of yield decline under abrupt drought–flood alternation stress at the panicle differentiation stage was analyzed by looking at the metabolome, proteome as well as yield and physiological and biochemical indexes. The results showed that drought and flood stress caused a decrease in the yield of rice at the panicle differentiation stage, and abrupt drought–flood alternation stress created a synergistic effect for the reduction of yield. The main reason for the decrease of yield per plant under abrupt drought–flood alternation was the decrease of seed setting rate. Compared with CK0 (no drought and no flood), the net photosynthetic rate and soluble sugar content of T1 decreased significantly and its hydrogen peroxidase, superoxide dismutase, peroxidase activity increased significantly. The identified differential metabolites and differentially expressed proteins indicated that photosynthesis metabolism, energy metabolism pathway and reactive oxygen species response have changed strongly under abrupt drought–flood alteration stress, which are factors that leads to the rice grain yield reduction. 相似文献