首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   5篇
  国内免费   6篇
  81篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   5篇
  2019年   5篇
  2018年   5篇
  2017年   1篇
  2016年   3篇
  2015年   7篇
  2014年   6篇
  2013年   5篇
  2012年   9篇
  2011年   7篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   6篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
31.
One hallmark of acquired tolerance is bystander suppression, a process whereby Ag-specific (adaptive) T regulatory cells (TR) inhibit the T effector cell response both to specific Ag and to a colocalized third-party Ag. Using peripheral blood T cells from recipients of HLA-identical kidney transplants as responders in the trans vivo-delayed type hypersensitivity assay, we found that dendritic cells (DC), but not monocyte APCs, could mediate bystander suppression of EBV-specific recall response. When HA-1(H) peptide was added to mixtures of plasmacytoid DC (pDC) and T cells, bystander suppression of the response to a colocalized recall Ag occurred primarily via indolamine-2,3-dioxygenase (IDO) production. Similarly, addition of HA-1(H) peptide to cocultures of T cells and pDC, but not myeloid DC (mDC), induced IDO activity in vitro. When mDC presented HA-1(H) peptide to Ag-specific CD8+ TR, cytokine release (TGF-beta, IL-10, or both) was the primary mode of bystander suppression. Bystander suppression via mDC was reversed not only by Ab to TGF-beta and its receptor on T cells, but also by Ab to thrombospondin-1. EBV addition did not induce IDO or thrombospondin-1 in T-DC cocultures, suggesting that these DC products are not induced by T effector cells, but only by TR cells. These results shed light upon the mechanism of bystander suppression by donor Ag-specific TR in patients with organ transplant tolerance and underscores the distinct and critical roles of mDC and pDCs in this phenomenon.  相似文献   
32.
One of the most important goals in the breeding of oilseed crops, including Brassica napus, is to improve the quality of edible vegetable oil, which is mainly determined by the seed fatty acid composition, particularly the C18:1 content. Previous studies have indicated that the C18:1 content is a polygenic trait, and no stable quantitative trait loci (QTLs) except for FAD2 have been reported. By performing a GWAS using 375 low erucic acid B. napus accessions genotyped with the Brassica 60K SNP array and constructing a high‐density SNP‐based genetic map of a 150 DH population, we identified a novel QTL on the A9 chromosome. The novel locus could explain 11.25%, 5.72% and 6.29% of phenotypic variation during three consecutive seasons and increased the C18:1 content by approximately 3%–5%. By fine mapping and gene expression analysis, we found three potential candidate genes and verified the fatty acids in a homologous gene mutant of Arabidopsis. A metal ion‐binding protein was found to be the most likely candidate gene in the region. Thus, the C18:1 content can be further increased to about 80% with this novel locus together with FAD2 mutant allele without compromise of agronomic performance. A closely linked marker, BnA129, for this novel QTL (OLEA9) was developed so that we can effectively identify materials with high C18:1 content at an early growth stage by marker‐assisted selection. Our results may also provide new insight for understanding the complex genetic mechanism of fatty acid metabolism.  相似文献   
33.
34.
Approaches that prevent acute rejection of renal transplants in a rhesus monkey model were studied to determine a common mechanism of acceptance. After withdrawal of immunosuppression, all 14 monkeys retained normal allograft function for >6 mo. Of these, nine rejected their renal allograft during the study, and five maintained normal function throughout the study period. The appearance of TGF-beta 1(+) interstitial mononuclear cells in the graft coincided with a nonrejection histology, whereas the absence/disappearance of these cells was observed with the onset of rejection. Analysis with a variety of TGF-beta 1-reactive Abs indicated that the tolerance-associated infiltrates expressed the large latent complex form of TGF-beta 1. Peripheral leukocytes from rejecting monkeys lacking TGF-beta 1(+) allograft infiltrates responded strongly to donor Ags in delayed-type hypersensitivity trans-vivo assays. In contrast, allograft acceptors with TGF-beta 1(+) infiltrates demonstrated a much weaker peripheral delayed-type hypersensitivity response to donor alloantigens (p < 0.01 vs rejectors), which could be restored by Abs that either neutralized active TGF-beta 1 or blocked its conversion from latent to active form. Anti-IL-10 Abs had no restorative effect. Accepted allografts had CD8(+) and CD4(+) interstitial T cell infiltrates, but only the CD4(+) subset included cells costaining for TGF-beta 1. Our data support the hypothesis that the recruitment of CD4(+) T regulatory cells to the allograft interstitium is a final common pathway for metastable renal transplant tolerance in a non-human primate model.  相似文献   
35.
Many tumor Ags recognized by T cells are self-Ags. Because high avidity, self-reactive T cells are deleted in the thymus, any residual self-reactive T cells existing in the periphery are likely to be low avidity and nonresponsive due to peripheral tolerance mechanisms. Activation of these residual T cells is critical for targeting tumors for immunotherapy. In this study, we studied immune responses against the murine B16 melanoma using a tyrosinase-related protein 2 (TRP-2) peptide as a model tumor/self-Ag. Our results showed that TRP-2 peptide vaccination alone elicited a weak T cell response and modestly decreased B16 lung tumor nodules. The combination of peptide vaccination and treatment with an Ab directed against the inhibitory receptor CTLA-4 enhanced the immune response against TRP-2 peptide, inducing autoimmune depigmentation and further decreasing lung tumor nodules. However, both vaccination methods failed to protect against orthotopic (s.c.) B16 tumor challenge. The addition of an irradiated GM-CSF-expressing, amelanotic tumor cell vaccine significantly delayed s.c. B16 tumor growth. Subsequent studies revealed that provision of GM-CSF increased dendritic cell numbers in lymph nodes and spleen. Furthermore, addition of CTLA-4 blockade increased the frequency of TRP-2-specific, IFN-secreting T cells in spleen and lymph nodes. Overall, our results indicate that combining enhancement of Ag presentation with removal of CTLA-4-mediated inhibition can convert a "weaker" autoimmune response into a more potent antitumor immune response.  相似文献   
36.
Recombination during meiosis plays an important role in genome evolution by reshuffling existing genetic variations into fresh combinations with the possibility of recovery of lost ancestral genotypes. While crossover (CO) events have been well studied, gene conversion events (GCs), which represent non‐reciprocal information transfer between chromosomes, are poorly documented and difficult to detect due to their relatively small converted tract size. Here, we document these GC events and their phenotypic effects at an important locus in rice containing the SD1 gene, where multiple defective alleles contributed to the semi‐dwarf phenotype of rice in the ‘Green Revolution’ of the 1960s. Here, physical separation of two defects allows recombination to generate the wild‐type SD1 gene, for which plant height can then be used as a reporter. By screening 18 000 F2 progeny from a cross between two semi‐dwarf cultivars that carry these different defective alleles, we detected 24 GC events, indicating a conversion rate of ~3.3 × 10?4 per marker per generation in a single meiotic cycle in rice. Furthermore, our data show that indels and single‐nucleotide polymorphisms (SNPs) do not differ significantly in GC rates, at least at the SD1 locus. Our results provide strong evidence that GC by itself can regain an ancestral phenotype that was lost through mutation. This GC detection approach is likely to be broadly applicable to natural or artificial alleles of other phenotype‐related functional genes, which are abundant in other plant genomes.  相似文献   
37.
38.
Huan  Zongjin  Yao  Yongfang  Yu  Jianqiu  Chen  Hongwei  Li  Meirong  Yang  Chaojun  Zhao  Bo  Ni  Qingyong  Zhang  Mingwang  Xie  Meng  Xu  Huailiang 《Journal of microbiology (Seoul, Korea)》2020,58(5):367-376

The gut microbiome of captive primates can provide a window into their health and disease status. The diversity and composition of gut microbiota are influenced by not only host phylogeny, but also host diet. Old World monkeys (Cercopithecidae) are divided into two subfamilies: Cercopithecinae and Colobinae. The diet and physiological digestive features differ between these two subfamilies. Accordingly, highthroughput sequencing was used to examine gut microbiota differences between these two subfamilies, using data from 29 Cercopithecinae individuals and 19 Colobinae individuals raised in captivity. Through a comparative analysis of operational taxonomic units (OTUs), significant differences in the diversity and composition of gut microbiota were observed between Cercopithecinae and Colobinae. In particular, the gut microbiota of captive Old World monkeys clustered strongly by the two subfamilies. The Colobinae microbial diversity was higher than that of Cercopithecinae. Additionally, Firmicutes, Lactobacillaceae, Veillonellaceae, and Prevotella abundance were higher in Cercopithecinae, while Bacteroidetes, Ruminococcaceae, Christensenellaceae, Bacteroidaceae, and Acidaminococcaceae abundance were higher in Colobinae. PICRUSt analysis revealed that the predicted metagenomes of metabolic pathways associated with proteins, carbohydrates, and amino acids were significantly higher in Colobinae. In the context of host phylogeny, these differences between Cercopithecinae and Colobinae could reflect adaptations associated with their respective diets. This well-organized dataset is a valuable resource for future related research on primates and gut microbiota. Moreover, this study may provide useful insight into animal management practices and primate conservation.

  相似文献   
39.

Background

Atrial fibrillation (AF) is one of the most common types of arrhythmia in humans. Recently, many studies have investigated the relationship between human atrial fibrillation and the single nucleotide polymorphism (SNP) of rs1805127 (A>G) in KCNE1 gene, but the results were still inconsistent and inconclusive.

Method

Electronic databases and bibliographies of retrieved studies were searched. We performed a meta-analysis of ten case-control studies, including 2099 cases and 2252 controls, to evaluate the association of rs1805127 polymorphism (A>G) with the risk of AF. Random-effects model was used when the heterogeneity was obvious; otherwise, fixed-effects model was applied. Meta-regression was performed to examine potential source of heterogeneity. Egger''s test and Begg''s test were used to detect publication biases.

Results

The results showed a significantly increased risk of AF in homozygote comparison (GG vs. AA:OR = 1.899, 95%CI: 1.568, 2.300; Pheterogeneity = 0.217), heterozygote comparison (GA vs. AA:OR = 1.436, 95% CI:1.190, 1.732; Pheterogeneity = 0.739), dominant model(GA /GG vs. AA: OR = 1.624, 95%CI: 1.361, 1.938; Pheterogeneity = 0.778) and recessive model (GG vs. GA/AA: OR = 1.394, 95%CI:1.152, 1.686; Pheterogeneity = 0.03). Meta-regression revealed that the sample size and the types of AF were the source of the heterogeneity.

Conclusion

The rs1805127 polymorphism (A>G) of KCNE1 is associated with an increased risk of AF, which suggests the rs1805217 polymorphism of KCNE1 gene may play an important role in the pathogenesis of AF.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号