首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8318篇
  免费   464篇
  国内免费   495篇
  9277篇
  2025年   2篇
  2024年   124篇
  2023年   127篇
  2022年   265篇
  2021年   433篇
  2020年   332篇
  2019年   382篇
  2018年   331篇
  2017年   274篇
  2016年   370篇
  2015年   515篇
  2014年   577篇
  2013年   620篇
  2012年   776篇
  2011年   659篇
  2010年   372篇
  2009年   374篇
  2008年   392篇
  2007年   340篇
  2006年   293篇
  2005年   244篇
  2004年   212篇
  2003年   177篇
  2002年   157篇
  2001年   151篇
  2000年   116篇
  1999年   103篇
  1998年   73篇
  1997年   79篇
  1996年   71篇
  1995年   55篇
  1994年   49篇
  1993年   31篇
  1992年   41篇
  1991年   20篇
  1990年   26篇
  1989年   21篇
  1988年   16篇
  1987年   16篇
  1986年   12篇
  1985年   19篇
  1984年   9篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1966年   1篇
  1965年   2篇
排序方式: 共有9277条查询结果,搜索用时 15 毫秒
101.
    
Leptin is well acknowledged as an anorexigenic hormone that plays an important role in feeding control. Hypothalamic GABA system plays a significant role in leptin regulation on feeding and metabolism control. However, the pharmacological relationship of leptin and GABA receptor is still obscure. Therefore, we investigated the effect of leptin or combined with baclofen on the food intake in fasted mice. We detected the changes in hypothalamic c‐Fos expression, hypothalamic TH, POMC and GAD67 expression, plasma insulin, POMC and GABA levels to demonstrate the mechanisms. We found that leptin inhibit fasting‐induced increased food intake and activated hypothalamic neurons. The inhibitory effect on food intake induced by leptin in fasted mice can be reversed by pretreatment with baclofen. Baclofen reversed leptin's inhibition on c‐Fos expression of PAMM in fasted mice. Therefore, these results indicate that leptin might inhibit fasting‐triggered activation of PVN neurons via presynaptic GABA synaptic functions which might be partially blocked by pharmacological activating GABA‐B. Our findings identify the role of leptin in the regulation of food intake.  相似文献   
102.
    
Bone loss (osteopenia) is a common complication in human solid tumour. In addition, after surgical treatment of gynaecological tumour, osteoporosis often occurs due to the withdrawal of oestrogen. The major characteristic of osteoporosis is the low bone mass with micro-architectural deteriorated bone tissue. And the main cause is the overactivation of osteoclastogenesis, which is one of the most important therapeutic targets. Inflammation could induce the interaction of RANKL/RANK, which is the promoter of osteoclastogenesis. Triptolide is derived from the traditional Chinese herb lei gong teng, presented multiple biological effects, including anti-cancer, anti-inflammation and immunosuppression. We hypothesized that triptolide could inhibits osteoclastogenesis by suppressing inflammation activation. In this study, we confirmed that triptolide could suppress RANKL-induced osteoclastogenesis in bone marrow mononuclear cells (BMMCs) and RAW264.7 cells and inhibited the osteoclast bone resorption functions. PI3K-AKT-NFATc1 pathway is one of the most important downstream pathways of RANKL-induced osteogenesis. The experiments in vitro indicated that triptolide suppresses the activation of PI3K-AKT-NFATc1 pathway and the target point located at the upstream of AKT because both NFATc1 overexpression and AKT phosphorylation could ameliorate the triptolide suppression effects. The expression of MDM2 was elevated, which demonstrated the MDM-p53-induced cell death might contribute to the osteoclastogenesis suppression. Ovariectomy-induced bone loss and inflammation activation were also found to be ameliorated in the experiments in vivo. In summary, the new effect of anti-cancer drug triptolide was demonstrated to be anti-osteoclastogenesis, and we demonstrated triptolide might be a promising therapy for bone loss caused by tumour.  相似文献   
103.
    
The chemical composition and in vitro antioxidant activity of the essential oil of propolis (EOP) collected from 25 locations in China was investigated. Steam‐distillation extraction was used to extract the EOP, and chemical composition was identified by GC/MS. The antioxidant activities of EOP were also measured. The result showed that a total of 406 compounds were detected in EOP. The major compounds of Chinese EOP were cedrol, γ‐eudesmol, benzyl alcohol, phenethyl alcohol, 2‐methoxy‐4‐vinylphenol, 3,4‐dimethoxystyrene and guaiol. Principal component analysis revealed the significant correlation between EOP compositions and their origins, and certain correlation was detected between EOP and their color. Linear discriminant analysis showed that 88 % and 84 % of the propolis samples were predicted correctly as the groupings identified by climatic zone and the color, respectively. Furthermore, the differences of antioxidant activities of EOP were significant. EOP of Shandong had the strongest antioxidant activities, whereas EOP of Guangdong, Yunnan and Hunan showed the poorest.  相似文献   
104.
    
Functional nanomaterials are playing a crucial role in the emerging field of energy‐related devices. Recently, as a novel synthesis method, high‐temperature shock (HTS), which is rapid, low cost, eco‐friendly, universal, scalable, and controllable, has provided a promising option for the rational design and synthesis of various high‐quality nanomaterials. In this report, the HTS technique, including the equipment setup and operating principle, is systematically introduced, and recent progress in the synthesis of nanomaterials for energy storage and conversion applications using this HTS method is summarized. The growth mechanisms of nanoparticles and carbonaceous nanomaterials are thoroughly discussed, followed by the summary of the characteristic advantages of the HTS strategy. A series of nanomaterials prepared by the HTS method, including carbon‐based films, metal nanoparticles and compound nanoparticles, show high performance in the diverse applications of storage energy batteries, highly active catalysts, and smart energy devices. Finally, the future perspectives and directions of HTS in nanomanufacturing for broader applications are presented.  相似文献   
105.
    
The traditional Zn/MnO2 battery has attracted great interest due to its low cost, high safety, high output voltage, and environmental friendliness. However, it remains a big challenge to achieve long‐term stability, mainly owing to the poor reversibility of the cathode reaction. Different from previous studies where the cathode redox reaction of MnO2/MnOOH is in solid state with limited reversibility, here a new aqueous rechargeable Zn/MnO2 flow battery is constructed with dissolution–precipitation reactions in both cathodes (Mn2+/MnO2) and anodes (Zn2+/Zn), which allow mixing of anolyte and catholyte into only one electrolyte and remove the requirement for an ion selective membrane for cost reduction. Impressively, this new battery exhibits a high discharge voltage of ≈1.78 V, good rate capability (10C discharge), and excellent cycling stability (1000 cycles without decay) at the areal capacity ranging from 0.5 to 2 mAh cm‐2. More importantly, this battery can be readily enlarged to a bench scale flow cell of 1.2 Ah with good capacity retention of 89.7% at the 500th cycle, displaying great potential for large‐scale energy storage.  相似文献   
106.
107.
    
Imitation Switch (ISWI) chromatin remodelers are known to function in diverse multi‐subunit complexes in yeast and animals. However, the constitution and function of ISWI complexes in Arabidopsis thaliana remain unclear. In this study, we identified forkhead‐associated domain 2 (FHA2) as a plant‐specific subunit of an ISWI chromatin‐remodeling complex in Arabidopsis. By in vivo and in vitro analyses, we demonstrated that FHA2 directly binds to RLT1 and RLT2, two redundant subunits of the ISWI complex in Arabidopsis. The stamen filament is shorter in the fha2 and rlt1/2 mutants than in the wild type, whereas their pistil lengths are comparable. The shorter filament, which is due to reduced cell size, results in insufficient pollination and reduced fertility. The rlt1/2 mutant shows an early‐flowering phenotype, whereas the phenotype is not shared by the fha2 mutant. Consistent with the functional specificity of FHA2, our RNA‐seq analysis indicated that the fha2 mutant affects a subset of RLT1/2‐regulated genes that does not include genes involved in the regulation of flowering time. This study demonstrates that FHA2 functions as a previously uncharacterized subunit of the Arabidopsis ISWI complex and is exclusively involved in regulating stamen development and plant fertility.  相似文献   
108.
    
Wu  Hao  Cui  Yuanting  He  Chengkang  Gao  Peng  Li  Qiang  Zhang  Hexuan  Jiang  Yanli  Hu  Yingru  Wei  Xiao  Lu  Zongshi  Ma  Tianyi  Liu  Daoyan  Zhu  Zhiming 《中国科学:生命科学英文版》2020,63(11):1665-1677
Science China Life Sciences - High salt intake is a known risk factor of cardiovascular diseases. Our recent study demonstrated that long-term high salt intake impairs transient receptor potential...  相似文献   
109.
  总被引:1,自引:0,他引:1  
  相似文献   
110.
    
BACKGROUNDAutoimmune hepatitis is a serious autoimmune liver disease that threatens human health worldwide, which emphasizes the urgent need to identify novel treatments. Stem cells from human exfoliated deciduous teeth (SHED), which are easy to obtain in a non-invasive manner, show pronounced proliferative and immunomodulatory capacities.AIMTo investigate the protective effects of SHED on concanavalin A (ConA)-induced hepatitis in mice, and to elucidate the associated regulatory mechanisms.METHODSWe used a ConA-induced acute hepatitis mouse model and an in vitro co-culture system to study the protective effects of SHED on ConA-induced autoimmune hepatitis, as well as the associated underlying mechanisms.RESULTSSHED infusion could prevent aberrant histopathological liver architecture caused by ConA-induced infiltration of CD3+, CD4+, tumor necrosis-alpha+, and interferon-gamma+ inflammatory cells. Alanine aminotransferase and aspartate aminotransferase were significantly elevated in hepatitis mice. SHED infusion could therefore block ConA-induced alanine aminotransferase and aspartate aminotransferase elevations. Mechanistically, ConA upregulated tumor necrosis-alpha and interferon-gamma expression, which was activated by the nuclear factor-kappa B pathway to induce hepatocyte apoptosis, resulting in acute liver injury. SHED administration protected hepatocytes from ConA-induced apoptosis. CONCLUSIONSHED alleviates ConA-induced acute liver injury via inhibition of hepatocyte apoptosis mediated by the nuclear factor-kappa B pathway. Our findings could provide a potential treatment strategy for hepatitis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号