首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35372篇
  免费   2550篇
  国内免费   2158篇
  40080篇
  2024年   264篇
  2023年   456篇
  2022年   837篇
  2021年   1340篇
  2020年   1034篇
  2019年   1247篇
  2018年   1167篇
  2017年   813篇
  2016年   1227篇
  2015年   2032篇
  2014年   2259篇
  2013年   2503篇
  2012年   3058篇
  2011年   2844篇
  2010年   1705篇
  2009年   1515篇
  2008年   1846篇
  2007年   1653篇
  2006年   1512篇
  2005年   1246篇
  2004年   1162篇
  2003年   988篇
  2002年   896篇
  2001年   720篇
  2000年   657篇
  1999年   589篇
  1998年   330篇
  1997年   318篇
  1996年   299篇
  1995年   249篇
  1994年   266篇
  1993年   182篇
  1992年   320篇
  1991年   295篇
  1990年   248篇
  1989年   230篇
  1988年   193篇
  1987年   156篇
  1986年   146篇
  1985年   151篇
  1984年   142篇
  1983年   103篇
  1982年   90篇
  1980年   59篇
  1979年   75篇
  1978年   69篇
  1977年   58篇
  1976年   67篇
  1975年   63篇
  1974年   75篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Botrytis cinerea is a pathogenic fungus causing gray mold on numerous economically important crops and ornamental plants. This study was conducted to characterize the biological and molecular features of a novel RNA mycovirus, Botrytis cinerea RNA virus 1 (BcRV1), in the hypovirulent strain BerBc-1 of B. cinerea. The genome of BcRV1 is 8,952 bp long with two putative overlapped open reading frames (ORFs), ORF1 and ORF2, coding for a hypothetical polypeptide (P1) and RNA-dependent RNA polymerase (RdRp), respectively. A −1 frameshifting region (designated the KNOT element) containing a shifty heptamer, a heptanucleotide spacer, and an H-type pseudoknot was predicted in the junction region of ORF1 and ORF2. The −1 frameshifting role of the KNOT element was experimentally confirmed through determination of the production of the fusion protein red fluorescent protein (RFP)-green fluorescent protein (GFP) by the plasmid containing the construct dsRed-KNOT-eGFP in Escherichia coli. BcRV1 belongs to a taxonomically unassigned double-stranded RNA (dsRNA) mycovirus group. It is closely related to grapevine-associated totivirus 2 and Sclerotinia sclerotiorum nonsegmented virus L. BcRV1 in strain BerBc-1 was found capable of being transmitted vertically through macroconidia and horizontally to other B. cinerea strains through hyphal contact. The presence of BcRV1 was found to be positively correlated with hypovirulence in B. cinerea, with the attenuation effects of BcRV1 on mycelial growth and pathogenicity being greatly affected by the accumulation level of BcRV1.  相似文献   
72.
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). Our previous report indicates that IBDV VP5 induces apoptosis via interaction with voltage-dependent anion channel 2 (VDAC2). However, the underlying molecular mechanism is still unclear. We report here that receptor of activated protein kinase C 1 (RACK1) interacts with both VDAC2 and VP5 and that they could form a complex. We found that overexpression of RACK1 inhibited IBDV-induced apoptosis in DF-1 cells and that knockdown of RACK1 by small interfering RNA induced apoptosis associated with activation of caspases 9 and 3 and suppressed IBDV growth. These results indicate that RACK1 plays an antiapoptotic role during IBDV infection via interaction with VDAC2 and VP5, suggesting that VP5 sequesters RACK1 and VDAC2 in the apoptosis-inducing process.  相似文献   
73.
Recently we have shown that the peptidyl-prolyl cis/trans isomerase parvulin 17 (Par17) interacts with tubulin in a GTP-dependent manner, thereby promoting the formation of microtubules. Microtubule assembly is regulated by Ca2+-loaded calmodulin (Ca2+/CaM) both in the intact cell and under in vitro conditions via direct interaction with microtubule-associated proteins. Here we provide the first evidence that Ca2+/CaM interacts also with Par17 in a physiologically relevant way, thus preventing Par17-promoted microtubule assembly. In contrast, parvulin 14 (Par14), which lacks only the first 25 N-terminal residues of the Par17 sequence, does not interact with Ca2+/CaM, indicating that this interaction is exclusive for Par17. Pulldown experiments and chemical shift perturbation analysis with 15N-labeled Par17 furthermore confirmed that calmodulin (CaM) interacts in a Ca2+-dependent manner with the Par17 N terminus. The reverse experiment with 15N-labeled Ca2+/CaM demonstrated that the N-terminal Par17 segment binds to both CaM lobes simultaneously, indicating that Ca2+/CaM undergoes a conformational change to form a binding channel between its two lobes, apparently similar to the structure of the CaM-smMLCK796–815 complex. In vitro tubulin polymerization assays furthermore showed that Ca2+/CaM completely suppresses Par17-promoted microtubule assembly. The results imply that Ca2+/CaM binding to the N-terminal segment of Par17 causes steric hindrance of the Par17 active site, thus interfering with the Par17/tubulin interaction. This Ca2+/CaM-mediated control of Par17-assisted microtubule assembly may provide a mechanism that couples Ca2+ signaling with microtubule function.  相似文献   
74.
75.
76.
We previously reported that i) a Western diet increased levels of unsaturated lysophosphatidic acid (LPA) in small intestine and plasma of LDL receptor null (LDLR−/−) mice, and ii) supplementing standard mouse chow with unsaturated (but not saturated) LPA produced dyslipidemia and inflammation. Here we report that supplementing chow with unsaturated (but not saturated) LPA resulted in aortic atherosclerosis, which was ameliorated by adding transgenic 6F tomatoes. Supplementing chow with lysophosphatidylcholine (LysoPC) 18:1 (but not LysoPC 18:0) resulted in dyslipidemia similar to that seen on adding LPA 18:1 to chow. PF8380 (a specific inhibitor of autotaxin) significantly ameliorated the LysoPC 18:1-induced dyslipidemia. Supplementing chow with LysoPC 18:1 dramatically increased the levels of unsaturated LPA species in small intestine, liver, and plasma, and the increase was significantly ameliorated by PF8380 indicating that the conversion of LysoPC 18:1 to LPA 18:1 was autotaxin dependent. Adding LysoPC 18:0 to chow increased levels of LPA 18:0 in small intestine, liver, and plasma but was not altered by PF8380 indicating that conversion of LysoPC 18:0 to LPA 18:0 was autotaxin independent. We conclude that i) intestinally derived unsaturated (but not saturated) LPA can cause atherosclerosis in LDLR−/− mice, and ii) autotaxin mediates the conversion of unsaturated (but not saturated) LysoPC to LPA.  相似文献   
77.
The diaphragm muscle of hyperkalemic periodic paralysis (HyperKPP) patients and of the M1592V HyperKPP mouse model rarely suffers from the myotonic and paralytic symptoms that occur in limb muscles. Enigmatically, HyperKPP diaphragm expresses the mutant NaV1.4 channel and, more importantly, has an abnormally high Na+ influx similar to that in extensor digitorum longus (EDL) and soleus, two hindlimb muscles suffering from the robust HyperKPP abnormalities. The objective was to uncover the physiological mechanisms that render HyperKPP diaphragm asymptomatic. A first mechanism involves efficient maintenance of resting membrane polarization in HyperKPP diaphragm at various extracellular K+ concentrations compared with larger membrane depolarizations in HyperKPP EDL and soleus. The improved resting membrane potential (EM) results from significantly increased Na+ K+ pump electrogenic activity, and not from an increased protein content. Action potential amplitude was greater in HyperKPP diaphragm than in HyperKPP soleus and EDL, providing a second mechanism for the asymptomatic behavior of the HyperKPP diaphragm. One suggested mechanism for the greater action potential amplitude is lower intracellular Na+ concentration because of greater Na+ K+ pump activity, allowing better Na+ current during the action potential depolarization phase. Finally, HyperKPP diaphragm had a greater capacity to generate force at depolarized EM compared with wild-type diaphragm. Action potential amplitude was not different between wild-type and HyperKPP diaphragm. There was also no evidence for an increased activity of the Na+–Ca2+ exchanger working in the reverse mode in the HyperKPP diaphragm compared with the wild-type diaphragm. So, a third mechanism remains to be elucidated to fully understand how HyperKPP diaphragm generates more force compared with wild type. Although the mechanism for the greater force at depolarized resting EM remains to be determined, this study provides support for the modulation of the Na+ K+ pump as a component of therapy to alleviate weakness in HyperKPP.  相似文献   
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号