首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1849篇
  免费   171篇
  国内免费   240篇
  2024年   12篇
  2023年   43篇
  2022年   102篇
  2021年   130篇
  2020年   105篇
  2019年   129篇
  2018年   108篇
  2017年   71篇
  2016年   95篇
  2015年   121篇
  2014年   156篇
  2013年   161篇
  2012年   206篇
  2011年   164篇
  2010年   86篇
  2009年   76篇
  2008年   108篇
  2007年   65篇
  2006年   54篇
  2005年   37篇
  2004年   44篇
  2003年   30篇
  2002年   25篇
  2001年   26篇
  2000年   12篇
  1999年   17篇
  1998年   4篇
  1997年   12篇
  1996年   3篇
  1995年   9篇
  1994年   10篇
  1993年   8篇
  1992年   7篇
  1991年   7篇
  1990年   3篇
  1989年   4篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
排序方式: 共有2260条查询结果,搜索用时 171 毫秒
941.
The development of atherosclerosis (AS) is a multifactorial process, in which elevated plasma resistin (a key factor leading to insulin resistance) levels play an important role. Emerging evidence indicate that microRNAs (miRNAs) are involved in AS; However, the regulation and function of miRNAs in response to AS remain poorly understood. Our study analyzed the effects of miR-492 on insulin resistance, endothelial activation, and resistin expression in apoE knock-out mice and human umbilical vein endothelial cells after high-glucose treatment and miR-492 mimics transfection. We also investigated the underlying molecular mechanisms. Our results showed that high glucose stress induced a significant decrease in miR-492 expression, with a remarkable upregulation of resistin expression. We then identified resistin as a novel direct target of miR-492 using 3′-UTR luciferase reporter assay. Histopathologic examination demonstrated that upregulation of miR-492 attenuated endothelial cells migration and lipid accumulation induced by high glucose stress. Further investigation demonstrated that the upregulation of p-STAT3, SOCS, and P-selectin activation induced by high glucose stress was attenuated by upregulation of miR-492. Together, our findings indicate that miR-492 contributes to insulin resistance and endothelial dysfunction induced by high glucose, via directly downregulating resistin expression, and involving STAT3 phosphorylation, SOCS, and P-selectin activation.  相似文献   
942.

Background

Choline kinase has three isoforms encoded by the genes Chka and Chkb. Inactivation of Chka in mice results in embryonic lethality, whereas Chkb−/− mice display neonatal forelimb bone deformations.

Methods

To understand the mechanisms underlying the bone deformations, we compared the biology and biochemistry of bone formation from embryonic to young adult wild-type (WT) and Chkb−/− mice.

Results

The deformations are specific to the radius and ulna during the late embryonic stage. The radius and ulna of Chkb−/− mice display expanded hypertrophic zones, unorganized proliferative columns in their growth plates, and delayed formation of primary ossification centers. The differentiation of chondrocytes of Chkb−/− mice was impaired, as was chondrocyte proliferation and expression of matrix metalloproteinases 9 and 13. In chondrocytes from Chkb−/− mice, phosphatidylcholine was slightly lower than in WT mice whereas the amount of phosphocholine was decreased by approximately 75%. In addition, the radius and ulna from Chkb−/− mice contained fewer osteoclasts along the cartilage/bone interface.

Conclusions

Chkb has a critical role in the normal embryogenic formation of the radius and ulna in mice.

General Significance

Our data indicate that choline kinase beta plays an important role in endochondral bone formation by modulating growth plate physiology.  相似文献   
943.
The peroxynitrite free radical (ONOO?) modulation of miniature excitatory postsynaptic currents (mEPSCs) and spontaneous excitatory postsynaptic currents (sEPSCs) was investigated in rat CA1 pyramidal neurons using the whole-cell patch clamp technique. SIN-1(3-morpholino-sydnonimine), which can lead the simultaneous generation of superoxide anion and nitric oxide, and then form the highly reactive species ONOO?, induced dose-dependent inhibition in amplitudes of both mEPSCs and sEPSCs. The SIN-1 action on mEPSC amplitude was completely blocked by U0126, a selective MEK inhibitor, suggesting that MEK contributed to the action of ONOO? on mEPSCs. The effect of SIN-1 was completely occluded either in the presence of the calcium chelator EGTA or the non-selective calcium channel antagonist Cd2+. Furthermore, the application of nifedipine (20 μM), the L-type calcium channel blocker, had no effect on the ONOO?-induced decrease in mEPSC amplitude, excluding a role for L-type voltage-gated Ca2+ channels in this process. SIN-1 inhibited the frequency of sEPSCs but had no effect on mEPSC frequency, which suggested a presynaptic action potential-dependent the action of ONOO? at CA1 pyramidal neuron synapses. The best-known glutamatergic input to CA1 pyramidal neurons is via Schaffer collaterals from CA3 area. However, no changes were observed in slices treated with SIN-1 on the spontaneous firing rates of CA3 pyramidal neurons. These findings suggested that SIN-1 inhibited glutamatergic synaptic transmission of CA1 pyramidal neurons by a postsynaptic non-L-type voltage gated calcium channel-dependent mechanism.  相似文献   
944.

Objective

Cystathionine beta-synthase (CBS) 844ins68 polymorphism has been implicated in the development of neural tube defects (NTDs). However, the results of different studies are inconsistent. Thus, we conducted a meta-analysis to further investigate this association.

Methods

Published studies were retrieved from PubMed, Embase, China National Knowledge Infrastructure, and Wanfang Data. Studies that evaluated the association between CBS 844ins68 polymorphism and NTD risk among mothers, children, or fathers were included. The pooled odds ratios with 95% confidence interval were calculated using a fixed effects model or a random effects model.

Results

A total of eight studies on mothers (641 cases and 1145 controls), eight studies on children (852 cases and 1912 controls), and five studies (263 cases and 1562 controls) on fathers were included. The meta-analysis revealed no significant association between CBS 844ins68 polymorphism and NTD risk among mothers, children, and fathers under either genetic model.

Conclusion

The present meta-analysis indicates that CBS 844ins68 polymorphism is not a good predictor of risk for NTDs.  相似文献   
945.

Backgrounds and Aims

UDP-glucuronosyltransferase 1 A1 (UGT1A1) is an enzyme that transforms small lipophilic molecules into water-soluble and excretable metabolites. UGT1A1 polymorphisms contribute to hyperbilirubinemia. This study quantitatively associated UGT1A1 variants in patients with hyperbilirubinemia and healthy subjects.

Methods

A total of 104 individuals with hyperbilirubinemia and 105 healthy controls were enrolled for genotyping and DNA sequencing UGT1A1 sequence variants, including the Phenobarbital Response enhancer module (PBREM) region, the promoter region (TATA box), and the 5 exons for quantitative association with hyperbilirubinemia.

Results

Eleven UGT1A1 variants were revealed in the case and control subjects, four of which were novel coding variants. A variant of PBREM (UGT1A1*60) was found in 47.6% of the patients, a TA repeat motif in the 5-primer promoter region [A(TA)7TAA,UGT1A1*28] was found in 27.9% of the patients, and p.G71R (UGT1A1*6) was in 33.2% of the patients. For the healthy controls, the frequency of UGT1A1*60, UGT1A1*28 and UGT1A1*6 was 26.7%, 9.0% and 15.7%, respectively. Homozygous UGT1A1*28 and homozygous UGT1A1*6 were significantly associated with the risk of adult hyperbilirubinemia, with an odds ratio (OR) of 17.79 (95% CIs, 2.11–133.61) and 14.93 (95% CIs, 1.83–121.88), respectively. Quantitative analysis showed that sense mutation (including UGT1A1*6) and UGT1A1*28/*28, but not UGT1A1*60/*60 or UGT1A1*1/*28, was associated with increased serum total bilirubin (TB) levels. High linkage disequilibrium occurred between UGT1A1*60 and UGT1A1*28 (D′ = 0.964, r2 = 0.345).

Conclusions

This study identified four novel UGT1A1 coding variants, some of which were associated with increased serum TB levels. A quantitative approach to evaluate adult hyperbilirubinemia provides a more vigorous framework for better understanding of adult hyperbilirubinemia genetics.  相似文献   
946.
Salicylic acid (SA) functions in the plant response to drought stress were assessed using SA-altering Arabidopsis mutants, including snc1 (with constitutively high levels of SA) and its nahG-transformed plants (named as snc1/nahG, with a comparable SA level to the wild type), sid2 and transgenic line nahG (both with SA deficiency), and npr1-1 (with SA signaling blockage). The drought stress was simulated by polyethylene glycol (PEG)-6000 treatment. Compared with wild-type (wt) plants, the snc1 plants displayed obvious easing of PEG-induced growth inhibition, leaf water loss, and photosynthesis-related impairment, whereas in nahG, sid2, and npr1-1 mutants the effect was more severe. PEG stress reduced stomatal conductance, to a higher extent in the snc1 line, whereas it was lower in nahG, sid2, and npr1-1 lines as compared with the wt. The snc1 plants accumulated higher levels of H2O2 than the other genotypes tested. PEG stress increased activities of superoxide dismutase and peroxidase, but decreased activities of catalase in all lines tested, to a greater extent in snc1 and less in sid2, nahG, and npr1-1 relative to wt. Proline was significantly increased, especially in snc1 line at 6 % and higher PEG stress. Noticeably, the performance of snc1 under PEG stress was dependent on SA levels, as the expression of nahG in snc1 plants did not only significantly reduce SA levels, but largely reversed the above-mentioned parameters, as well as eliminated the drought tolerance. Based on these data, it was concluded that endogenous SA levels and signaling provided a protective role in the Arabidopsis response to PEG-simulated drought.  相似文献   
947.
In the present study, we evaluated expressions of estrogen receptor (ER), progestin receptor (PR), human epidermal growth factor receptor-2 (HER-2), cyclooxygenase-2 (COX-2), and vascular endothelial growth factor (VEGF) in primary and relapsed/metastatic breast cancers to elucidate the clinical significance of these markers. The markers were evaluated by immunohistochemistry in specimens of 50 patients with primary or metastatic breast cancer. Positive rates of ER were significantly (p = 0.002) higher in primary versus relapsed/metastatic breast cancer (70 vs. 38 %, respectively). The VEGF positive expression rates were also significantly higher in primary versus metastatic cancer (82 vs. 38 %, respectively; p < 0.001). By contrast, positive rates of HER-2 and COX-2 were not significantly different between different types of cancer. COX-2 correlated with HER-2 expression in both primary and relapsed/metastatic focuses of breast cancer. COX-2 also correlated with VEGF expression in primary breast cancer. Expressions of ER, PR, HER2, and COX-2 did not correlate between primary and relapsed/metastatic breast cancers, indicating that the treatment decision should be made according to the status of these markers in relapsed/metastatic focuses. The total change rates of ER, PR, HER-2, COX-2, and VEGF were 26, 18, 10, 30, and 58 %, respectively. In conclusion, HER-2 and COX-2, along with VEGF, appear to play a role in the development and progression of breast cancer. In addition, all of the studied markers may serve as indicators of prognosis.  相似文献   
948.
Recently, microRNAs have been detected in serum and plasma, and circulating microRNA (miRNA) profiles have now been associated with many diseases such as cancers and heart disease, as well as altered physiological states. Because of their stability and disease resistance, circulation miRNAs appear to be an ideal material for biomarkers of diseases and physiological states in blood. However, the lack of a suitable internal reference gene (internal reference miRNA) has hampered research and application of circulating miRNAs. Currently, U6 and miR-16 are the most common endogenous controls in the research of miRNAs in tissues and cells. We performed microarray-based serum miRNA profiling on the serum of 20 nasopharyngeal carcinoma patients and 20 controls to detect the expressions of U6 and miRNAs. Profiling was followed by real-time quantitative Polymerase Chain Reaction (qPCR) in 80 patients (20 each with gastric cancer, nasopharyngeal carcinoma, colorectal cancer, and breast cancer) and 30 non-cancerous controls. qPCR was also performed to detect miRNAs in serum with repeated freezing and thawing. The results of microarray showed that with the exception of U6, Ct values of miR-16, miR-24, miR-142-3p, miR-19b and miR-192 in serum samples of nasopharyngeal carcinoma were greater than control samples. The results of 110 cases showed large fluctuations in U6 expression. The difference between the greatest and the least levels of expression was 3.29 for delta Ct values, and 1.23 for miR-16. The expressions of U6, miR-16 and miR-24 in serum subjected to different freeze–thaw cycles showed that U6 expression gradually decreased after 1, 2, and 4 cycles of freezing and thawing, while the expression of miR-16 and miR-24 remained relatively stable. Collectively, our results suggested that U6 is unsuitable as an internal reference gene in the research of circulating miRNAs.  相似文献   
949.
Endoplasmic reticulum (ER) stress has been implicated in various neurodegenerative diseases, including Alzheimer’s disease. We have previously observed amyloid production in the retina of the Tg2576 transgenic mouse model of Alzheimer’s disease. In this study, we used tunicamycin-induced ER stress in RGC-5 cells, a cell line identical to the photoreceptor cell line 661W, to investigate the effect of ER stress on production of amyloid-beta (Abeta) peptides. We found that the mRNA level of amyloid-beta precursor protein (APP) remained stable, while the protein level of amyloid-beta precursor protein (APP) was decreased, the amyloid-beta precursor protein cleaving enzymes beta-site APP-cleaving enzyme 1 and presenilin 1 were upregulated, Abeta1–40 and Abeta1–42 production were increased, and reactive oxygen species production and apoptosis markers were elevated following induction of ER stress. The protein level of Abeta degradation enzymes, neprilysin, endothelin-converting enzyme 1, and endothelin-converting enzyme 2 remained unchanged during the prolonged ER stress, showing that the generation of Abeta did not result from reduction of proteolysis by these enzymes. Inclusion of group II caspase inhibitor, Z-DEVD-FMK, increased the ER stress mediated Abeta production, suggesting that they are generated by a caspase-independent mechanism. Our findings provided evidence of a role of ER stress in Abeta peptide overproduction and apoptotic pathway activation in RGC-5 cells.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号